前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >开发人员掌握了这个技术,SQL效率会有几百倍的性能提升

开发人员掌握了这个技术,SQL效率会有几百倍的性能提升

作者头像
老虎刘
发布2022-06-22 18:00:59
2780
发布2022-06-22 18:00:59
举报
文章被收录于专栏:老虎刘谈oracle性能优化

完成相同业务逻辑的SQL,写法不同,执行效率可能会有几百上千倍的差距,今天我们通过几个案例来说明一下:

case1 :

原sql代码如下(执行时间1.2分钟):

代码语言:javascript
复制
with holder_clear_temp as
  ( select distinct t.principal_holder_account
    from ch_member.holder_account s, ch_member.clear_agency_relation t
    where s.holder_account = t.principal_holder_account      and s.holder_account_status = '1'
      and t.agency_status = '1'      and t.agency_type in ('1','2')
      and t.agency_holder_account = :1      and t.principal_holder_account != :2
  )  , holder_settle_temp as
  ( select t.principal_holder_account, t.product_category
    from ch_member.holder_account s, ch_member.settle_agency_rel t
    where s.holder_account = t.principal_holder_account
      and s.holder_account_status = '1'      and t.agency_status = '1'
      and t.agency_type in ('1','2')      and t.agency_holder_account = :3
      and t.principal_holder_account != :4
      and not exists
      ( select 1 from holder_clear_temp c where c.principal_holder_account=t.principal_holder_account  )
  ) , temp as
  ( select jour.BALANCE_CHG_SN
    from ch_his.HIS_ACCOUNT_CHG_BALANCE_JOUR jour
    inner join ch_stock.product_info info
      on (info.product_code = jour.product_code
        or 
        (info.pub_product_code = jour.product_code and info.has_distribution_flag='1'))
    where 1=1
      and (exists
      ( select 1 from holder_clear_temp c where jour.holder_account=c.principal_holder_account )
      or exists
      ( select 1 from holder_settle_temp s where jour.holder_account=s.principal_holder_account
          and info.product_Category =s.product_category
      ) )
      and jour.init_date >= :5  and jour.init_date <= :6
  union all
    select jour.BALANCE_CHG_SN
    from ch_stock.ACCOUNT_CHG_BALANCE_JOUR jour
    inner join ch_stock.product_info info
      on (info.product_code = jour.product_code
        or (info.pub_product_code = jour.product_code and info.has_distribution_flag='1'))
    where 1=1
      and ( exists
      ( select 1 from holder_clear_temp c where jour.holder_account=c.principal_holder_account )
      or exists
      ( select 1 from holder_settle_temp s
        where jour.holder_account=s.principal_holder_account and info.product_Category =s.product_category
      ) )
      and jour.init_date >= :7 and jour.init_date <= :8
  )
select count(1) from temp;

这个sql相对复杂一点,我们通过sql monitor显示的执行计划可以明显的看出瓶颈所在: 因为谓词条件使用了or 连接两个exists子查询,所以只能使用filter操作,而主查询返回的记录数又比较多,就导致sql执行时间比较长. 根据sql写法和执行计划反馈的信息,我们就可以通过改写来优化这个SQL.

sql monitor显示(部分):

建议有兴趣的朋友可以下载sql monitor文件,调动一下自己的思维,先自己分析一下该如何优化这个SQL . 我之前分享到微信群和QQ群,有一个群友已经找到了优化的核心所在,尽管还有一些小瑕疵.

注:sql monitor文件可以在QQ群16778072 下载. 这个sql monitor的"Plan Statistics"页面显示的执行计划有点不太正确,但是不影响大局."Plan"页面显示的是正常的.

改写后的SQL:

代码语言:javascript
复制
with holder_clear_temp as
  ( select distinct t.principal_holder_account
    from ch_member.holder_account s, ch_member.clear_agency_relation t
    where s.holder_account = t.principal_holder_account      and s.holder_account_status = '1'
      and t.agency_status = '1'      and t.agency_type in ('1','2')
      and t.agency_holder_account = '2110348'      and t.principal_holder_account != '2110348'
  )  , 
   holder_settle_temp as
  ( select t.principal_holder_account, t.product_category
    from ch_member.holder_account s, ch_member.settle_agency_rel t
    where s.holder_account = t.principal_holder_account
      and s.holder_account_status = '1'      and t.agency_status = '1'
      and t.agency_type in ('1','2')      and t.agency_holder_account = '2110348'
      and t.principal_holder_account != '2110348'
      and not exists
      ( select 1 from holder_clear_temp c where c.principal_holder_account=t.principal_holder_account  )
  ) , 
  exists_temp as
  (select principal_holder_account,'xx' as product_category  from holder_clear_temp
   union
   select principal_holder_account,product_category          from holder_settle_temp
  ),
  temp as
 ( 
  select jour.BALANCE_CHG_SN
    from ch_his.HIS_ACCOUNT_CHG_BALANCE_JOUR jour,ch_stock.product_info info,
         exists_temp uuu
    where info.product_code = jour.product_code
       and jour.holder_account=uuu.principal_holder_account 
       and (uuu.product_category='xx' or info.product_Category =uuu.product_category)
      and jour.init_date >= 20190205      
      and jour.init_date <= 20190505
 union all
   select jour.BALANCE_CHG_SN
    from ch_his.HIS_ACCOUNT_CHG_BALANCE_JOUR jour,ch_stock.product_info info,
         exists_temp uuu 
    where (info.pub_product_code = jour.product_code and info.has_distribution_flag='1')
       and jour.holder_account=uuu.principal_holder_account 
       and (uuu.product_category='xx' or info.product_Category =uuu.product_category)
      and jour.init_date >= 20190205      
      and jour.init_date <= 20190505
      and lnnvl(info.product_code = jour.product_code)
-------------------------------------------------------------------------------------      
  union all
    select jour.BALANCE_CHG_SN
    from ch_stock.ACCOUNT_CHG_BALANCE_JOUR jour
    inner join ch_stock.product_info info
      on (info.product_code = jour.product_code or (info.pub_product_code = jour.product_code and info.has_distribution_flag='1'))
    where 1=1
      and ( exists
          ( select 1 from holder_clear_temp c  where jour.holder_account=c.principal_holder_account )
           or 
           exists
          ( select 1 from holder_settle_temp s where jour.holder_account=s.principal_holder_account and info.product_Category =s.product_category
          ) )
      and jour.init_date >= 20190205 
      and jour.init_date <= 20190505
  )
select count(1) from temp;

改写效果:

经过改写后,原来执行1.2分钟的SQL,现场测试只需要耗时0.6秒(这个测试只改了耗时较长union all的上半部分,如果下半部分也做相同改写,预计最终执行时间不到0.3秒,性能提升达200多倍).

改写说明:

原sql用or 连接的两个exists ,存在相同的关联条件,我们通过一个union(注意不是union all)把它合并在一起,通过CTE(with as)定义为exists_temp ,然后就可以与主查询的两个表做关联,而不是做filter. 因为主查询两个表的关联关系也存在一个or,优化器必然会使用concat,那样就会拆分成4段做union all. 我只希望主查询做concat,就人工做了concat,将主查询拆分成了union all.

注:网上很多sql优化专家在对or 改写的时候,基本上全部改成了union,这是不等价的改写方法,标准改写请参考一下本例的union all配合lnnvl的写法.

case2:

原SQL:

代码语言:javascript
复制
SELECT A.FLOW_INID, A.CURR_STEP, A.FLOW_NAME, A.FINS_NAME, 
      TO_CHAR(A.INST_CRDA, 'YYYY-MM-DD HH24:MI:SS') INST_CRDA, 'manual_rel' RELA_TYPE
FROM FLOW_INST A
WHERE EXISTS
  (SELECT 1
  FROM FLOW_RELATE_INFO B
  WHERE A.FLOW_INID = B.RELATE_FLOW_INID    AND B.FLOW_INID = :1
  )
  OR 
    EXISTS
  (SELECT 1
  FROM FLOW_RELATE_INFO B
  WHERE A.FLOW_INID = B.FLOW_INID    AND B.RELATE_FLOW_INID = :2
  )
UNION ALL
SELECT S.FLOW_INID, S.CURR_STEP, S.FLOW_NAME
, S.FINS_NAME, TO_CHAR(S.INST_CRDA, 'YYYY-MM-DD HH24:MI:SS') INST_CRDA, 'auto_rel' RELA_TYPE
FROM FLOW_INST S, 
(SELECT FI.FLOW_INID, FI.PARA_INID
  FROM FLOW_INST FI
  WHERE FI.FLOW_INID = :3
) F
WHERE ((F.FLOW_INID = S.PARA_INID  AND S.IF_SUB = 1) OR F.PARA_INID = S.FLOW_INID )  AND S.DEL_FLAG = 0;

执行计划:
----------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                      | Name              | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time   | A-Rows |   A-Time   | Buffers |
----------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT               |                   |      1 |        |       |   194K(100)|          |      0 |00:00:01.83 |     352K|
|   1 |  UNION-ALL                     |                   |      1 |        |       |            |          |      0 |00:00:01.83 |     352K|
|*  2 |   FILTER                       |                   |      1 |        |       |            |          |      0 |00:00:01.83 |     352K|
|   3 |    TABLE ACCESS FULL           | FLOW_INST         |      1 |  57564 |  5115K|  1094   (1)| 00:00:14 |  58003 |00:00:00.05 |    4156 |
|*  4 |    TABLE ACCESS FULL           | FLOW_RELATE_INFO  |  58003 |      1 |    11 |     4   (0)| 00:00:01 |      0 |00:00:01.75 |     348K|
|   5 |   CONCATENATION                |                   |      1 |        |       |            |          |      0 |00:00:00.01 |       8 |
|   6 |    NESTED LOOPS                |                   |      1 |      1 |   106 |     3   (0)| 00:00:01 |      0 |00:00:00.01 |       3 |
|*  7 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      1 |      1 |     8 |     2   (0)| 00:00:01 |      0 |00:00:00.01 |       3 |
|*  8 |      INDEX UNIQUE SCAN         | PK_FLOW_INST      |      1 |      1 |       |     1   (0)| 00:00:01 |      1 |00:00:00.01 |       2 |
|*  9 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      0 |      1 |    98 |     1   (0)| 00:00:01 |      0 |00:00:00.01 |       0 |
|* 10 |      INDEX UNIQUE SCAN         | PK_FLOW_INST      |      0 |      1 |       |     0   (0)|          |      0 |00:00:00.01 |       0 |
|  11 |    NESTED LOOPS                |                   |      1 |      1 |   106 |     4   (0)| 00:00:01 |      0 |00:00:00.01 |       5 |
|  12 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      1 |      1 |     8 |     2   (0)| 00:00:01 |      1 |00:00:00.01 |       3 |
|* 13 |      INDEX UNIQUE SCAN         | PK_FLOW_INST      |      1 |      1 |       |     1   (0)| 00:00:01 |      1 |00:00:00.01 |       2 |
|* 14 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      1 |      1 |    98 |     2   (0)| 00:00:01 |      0 |00:00:00.01 |       2 |
|* 15 |      INDEX RANGE SCAN          | IDX_SUBFLOW_CHECK |      1 |      1 |       |     1   (0)| 00:00:01 |      0 |00:00:00.01 |       2 |
----------------------------------------------------------------------------------------------------------------------------------------------

分析:

这是一个OA系统的业务SQL,执行时间接近2秒. FLOW_RELATE_INFO 表只有480条记录,8 blocks.

在不改写SQL的情况下,我们可以通过创建FLOW_RELATE_INFO表上 (FLOW_INID,RELATE_FLOW_INID)两字段联合索引,将sql执行效率提高到0.37秒(OA系统相对可以接受的一个响应时间):

这个创建小表索引提升效率的方法,也是对那些小表不需要创建索引说法的一个反证.

如果我们改写这个sql,可以不需要创建索引,就能得到一个更好的性能提升:不到0.01秒.

SQL改写结果如下:

代码语言:javascript
复制
SELECT A.FLOW_INID, A.CURR_STEP, A.FLOW_NAME
, A.FINS_NAME, TO_CHAR(A.INST_CRDA, 'YYYY-MM-DD HH24:MI:SS') INST_CRDA, 'manual_rel' RELA_TYPE
FROM FLOW_INST A
WHERE FLOW_INID in
  (SELECT RELATE_FLOW_INID
  FROM FLOW_RELATE_INFO
  WHERE FLOW_INID = '77913'
  union 
  SELECT FLOW_INID
  FROM FLOW_RELATE_INFO B
  WHERE RELATE_FLOW_INID= '77913'
  )
UNION ALL
SELECT S.FLOW_INID, S.CURR_STEP, S.FLOW_NAME
, S.FINS_NAME, TO_CHAR(S.INST_CRDA, 'YYYY-MM-DD HH24:MI:SS') INST_CRDA, 'auto_rel' RELA_TYPE
FROM FLOW_INST S, 
(SELECT FI.FLOW_INID, FI.PARA_INID
  FROM FLOW_INST FI
  WHERE FI.FLOW_INID = '77913'
) F
WHERE ((F.FLOW_INID = S.PARA_INID AND S.IF_SUB = 1) OR F.PARA_INID = S.FLOW_INID )
  AND S.DEL_FLAG = 0;
  
  执行计划:
  ----------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                      | Name              | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time   | A-Rows |   A-Time   | Buffers |
----------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT               |                   |      1 |        |       |    19 (100)|          |      0 |00:00:00.01 |      20 |
|   1 |  UNION-ALL                     |                   |      1 |        |       |            |          |      0 |00:00:00.01 |      20 |
|   2 |   NESTED LOOPS                 |                   |      1 |      2 |   198 |    12  (17)| 00:00:01 |      0 |00:00:00.01 |      12 |
|   3 |    NESTED LOOPS                |                   |      1 |      2 |   198 |    12  (17)| 00:00:01 |      0 |00:00:00.01 |      12 |
|   4 |     VIEW                       | VW_NSO_1          |      1 |      2 |    16 |    10  (20)| 00:00:01 |      0 |00:00:00.01 |      12 |
|   5 |      SORT UNIQUE               |                   |      1 |      2 |    22 |    10  (20)| 00:00:01 |      0 |00:00:00.01 |      12 |
|   6 |       UNION-ALL                |                   |      1 |        |       |            |          |      0 |00:00:00.01 |      12 |
|*  7 |        TABLE ACCESS FULL       | FLOW_RELATE_INFO  |      1 |      1 |    11 |     4   (0)| 00:00:01 |      0 |00:00:00.01 |       6 |
|*  8 |        TABLE ACCESS FULL       | FLOW_RELATE_INFO  |      1 |      1 |    11 |     4   (0)| 00:00:01 |      0 |00:00:00.01 |       6 |
|*  9 |     INDEX UNIQUE SCAN          | PK_FLOW_INST      |      0 |      1 |       |     0   (0)|          |      0 |00:00:00.01 |       0 |
|  10 |    TABLE ACCESS BY INDEX ROWID | FLOW_INST         |      0 |      1 |    91 |     1   (0)| 00:00:01 |      0 |00:00:00.01 |       0 |
|  11 |   CONCATENATION                |                   |      1 |        |       |            |          |      0 |00:00:00.01 |       8 |
|  12 |    NESTED LOOPS                |                   |      1 |      1 |   106 |     3   (0)| 00:00:01 |      0 |00:00:00.01 |       3 |
|* 13 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      1 |      1 |     8 |     2   (0)| 00:00:01 |      0 |00:00:00.01 |       3 |
|* 14 |      INDEX UNIQUE SCAN         | PK_FLOW_INST      |      1 |      1 |       |     1   (0)| 00:00:01 |      1 |00:00:00.01 |       2 |
|* 15 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      0 |      1 |    98 |     1   (0)| 00:00:01 |      0 |00:00:00.01 |       0 |
|* 16 |      INDEX UNIQUE SCAN         | PK_FLOW_INST      |      0 |      1 |       |     0   (0)|          |      0 |00:00:00.01 |       0 |
|  17 |    NESTED LOOPS                |                   |      1 |      1 |   106 |     4   (0)| 00:00:01 |      0 |00:00:00.01 |       5 |
|  18 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      1 |      1 |     8 |     2   (0)| 00:00:01 |      1 |00:00:00.01 |       3 |
|* 19 |      INDEX UNIQUE SCAN         | PK_FLOW_INST      |      1 |      1 |       |     1   (0)| 00:00:01 |      1 |00:00:00.01 |       2 |
|* 20 |     TABLE ACCESS BY INDEX ROWID| FLOW_INST         |      1 |      1 |    98 |     2   (0)| 00:00:01 |      0 |00:00:00.01 |       2 |
|* 21 |      INDEX RANGE SCAN          | IDX_SUBFLOW_CHECK |      1 |      1 |       |     1   (0)| 00:00:01 |      0 |00:00:00.01 |       2 |
----------------------------------------------------------------------------------------------------------------------------------------------

case3:

原sql:

代码语言:javascript
复制
SELECT C.fd_txtname As "文件名称",a.fd_start_time AS "开始时间",
       a.fd_end_time AS "结束时间",c.N AS "数据量"  
FROM dapdw.tb_dapetl_log_proc a
join dapdw.tb_dapetl_distribute_spool B on a.fd_proc_name=b.fd_id
join 
(SELECT 'YCCTOEAL_INSTALMENT_DYYMMDD.DAT' as fd_txtname,COUNT(1) as N FROM C_EAL_LOANDEPO_HIS where data_Dt = 20190217 and source_id ='YCC01' 
UNION ALL
SELECT 'YCCTOEAL_UNDRAWN_DYYMMDD.DAT',COUNT(1) FROM C_EAL_LOANDEPO_HIS where data_Dt = 20190217 and source_id ='YCC03' 
UNION ALL
SELECT 'YCCTOEAL_FEE_DYYMMDD.DAT',COUNT(1) FROM C_EAL_LOANDEPO_HIS where data_Dt = 20190217 and source_id ='YCC05' 
UNION ALL
SELECT 'NDSTOEAL_FXSPOT_DYYMMDD.DAT',COUNT(1) FROM C_EAL_LOANDEPO_HIS where data_Dt = 20190217 and source_id ='NDS04' 
UNION ALL
SELECT 'YI2TOEAL_LOAN_DYYMMDD.DAT',COUNT(1) FROM C_EAL_LOANDEPO_HIS where data_Dt = 20190217 and source_id ='YI201' 
UNION ALL
SELECT 'YRLTOEAL_CCFD_DYYMMDD.DAT',COUNT(1) FROM C_EAL_LOANDEPO_HIS where data_Dt = 20190217 and source_id ='YRL01' 
) C
ON C.fd_txtname=B.fd_txtname 
WHERE A.FD_DATE=20190217 
; 

sql分析:

union all部分的C_EAL_LOANDEPO_HIS 表占用空间几十G,以data_Dt字段按天分区,有50个分区,data_Dt字段是varchar2类型.

存在两个问题:

1.data_Dt字段类型不匹配,发生了隐式类型转换,无法实现分区裁剪.类型匹配只需要访问一个分区,但是使用number类型变量要访问全部50个分区.

2.C_EAL_LOANDEPO_HIS表6次重复访问,可以使用case when的写法,只需要访问一次.

解决了上面两个问题后,预计改写后的SQL,执行执行效率会是原来的50*6=300倍. 只需要将data_Dt=20190217改成data_Dt='20190217',然后再配合case when, 不需要union all,只需要访问C_EAL_LOANDEPO_HIS表一次就能实现原SQL的业务逻辑,这个改写比较简单,这里就不多做说明.

总结:

今天通过3个case 来谈谈sql写法的重要性: 实现相同逻辑,写法不同,可能会有成百上千倍的性能差异.

只有熟练掌握分析执行计划的方法,再加上对各种SQL低效写法的了解,才能让SQL得以用最少的资源,最快的速度,完成业务需求.

感谢大家的阅读!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-05-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 老虎刘谈oracle性能优化 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档