应用:实际开发项目时,利用改变对比度和亮度的方法,实现光照不均匀的干扰。
代码:
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
Mat srcImage, dstImage;
int g_nContrast, g_nBrightness;
int g_nMaxContrast = 300;
int g_nMaxBrightness = 200;
void on_BrightnessAndContrast(int, void*)
{
for (int i = 0; i < srcImage.rows; i++)
for (int j = 0; j < srcImage.cols; j++)
for (int c = 0; c < srcImage.channels(); c++)
{
dstImage.at<Vec3b>(i, j)[c] = saturate_cast<uchar>((g_nContrast * 0.01) * (srcImage.at<Vec3b>(i, j)[c]) + g_nBrightness);
}
imshow("yuan", srcImage);
imshow("xiaoguo", dstImage);
}
int _brightness = 100;//亮度值
int _contrast = 100;//对比度值
Mat image;
//调节图片对比度和亮度
static void updateBrightnessContrast( int /*arg*/, void* )
{
int histSize = 64;
//对比度和亮度的初始值
int brightness = _brightness - 100;
int contrast = _contrast - 100;
/*
* The algorithm is by Werner D. Streidt
* (http://visca.com/ffactory/archives/5-99/msg00021.html)
*/
double a, b;
if( contrast > 0 )
{
double delta = 127.*contrast/100;
a = 255./(255. - delta*2);
b = a*(brightness - delta);
}
else
{
double delta = -128.*contrast/100;
a = (256.-delta*2)/255.;
b = a*brightness + delta;
}
Mat dst, hist;
//供点算子(像素变换)能力,通过增益(alpha)和偏置(beta)参数对图像进行调整
image.convertTo(dst, CV_8U, a, b);
imshow("image", dst);
calcHist(&dst, 1, 0, Mat(), hist, 1, &histSize, 0);
Mat histImage = Mat::ones(200, 320, CV_8U)*255;
normalize(hist, hist, 0, histImage.rows, NORM_MINMAX, CV_32F);
histImage = Scalar::all(255);
int binW = cvRound((double)histImage.cols/histSize);
for( int i = 0; i < histSize; i++ )
rectangle( histImage, Point(i*binW, histImage.rows),
Point((i+1)*binW, histImage.rows - cvRound(hist.at<float>(i))),
Scalar::all(0), -1, 8, 0 );
imshow("histogram", histImage);
}
const char* keys =
{
"{help h||}{@image|baboon.jpg|input image file}"
};
int main( int argc, const char** argv )
{
CommandLineParser parser(argc, argv, keys);
parser.about("\nThis program demonstrates the use of calcHist() -- histogram creation.\n");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string inputImage = parser.get<string>(0);
image = imread(inputImage, IMREAD_GRAYSCALE);
if(image.empty())
{
std::cerr << "Cannot read image file: " << inputImage << std::endl;
return -1;
}
namedWindow("image", 0);
namedWindow("histogram", 0);
//创建滚动条
createTrackbar("brightness", "image", &_brightness, 200, updateBrightnessContrast);
createTrackbar("contrast", "image", &_contrast, 200, updateBrightnessContrast);
updateBrightnessContrast(0, 0);
waitKey();
srcImage = imread("mmmm.jpg");
dstImage = Mat::zeros(srcImage.size(), srcImage.type());
namedWindow("xiaoguo", 1);
createTrackbar("duibi", "xiaoguo", &g_nContrast, g_nMaxContrast, on_BrightnessAndContrast);
createTrackbar("liangdu", "xiaoguo", &g_nBrightness, g_nMaxBrightness, on_BrightnessAndContrast);
on_BrightnessAndContrast(g_nContrast, 0);
on_BrightnessAndContrast(g_nBrightness, 0);
waitKey(0);
return 0;
}
效果: