前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >PAT(乙级)1001.害死人不偿命的(3n+1)猜想(15)

PAT(乙级)1001.害死人不偿命的(3n+1)猜想(15)

作者头像
lexingsen
发布2022-02-25 08:08:21
3800
发布2022-02-25 08:08:21
举报
文章被收录于专栏:乐行僧的博客

PAT 1001.害死人不偿命的(3n+1)猜想(15)

卡拉兹(Callatz)猜想: 对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展…… 我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式: 每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式: 出从 n 计算到 1 需要的步数。

输入样例:

代码语言:javascript
复制
3

输出样例:

代码语言:javascript
复制
5

题目分析:简单模拟

AC代码:

代码语言:javascript
复制
#include <cstdio>
#include <assert>

int main(){
  int n;
  scanf("%d",&n);
  int count = 0;
  while(n!=1){
      if(n%2==1){
        n = (3*n+1)/2;
        count++;
      }
      else{
        assert(n%2==0);
        n /= 2;
        count++;
      }
  }
  printf("%d",count);
  return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档