前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >排列问题也要去重了!

排列问题也要去重了!

作者头像
代码随想录
发布2021-10-19 15:44:54
6090
发布2021-10-19 15:44:54
举报
文章被收录于专栏:代码随想录

排列也要去重了

47.全排列 II

力扣题目链接:https://leetcode-cn.com/problems/permutations-ii

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出:[[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

思路

如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。

这道题目和46.全排列的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列

这里又涉及到去重了。

40.组合总和II90.子集II我们分别详细讲解了组合问题和子集问题如何去重。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素经行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

46.全排列中已经详解讲解了排列问题的写法,在40.组合总和II90.子集II中详细讲解的去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:

C++代码

代码语言:javascript
复制
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树支nums[i - 1]使用过
            // used[i - 1] == false,说明同一树层nums[i - 1]使用过
            // 如果同一树层nums[i - 1]使用过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracking(nums, used);
                path.pop_back();
                used[i] = false;
            }
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 排序
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

拓展

大家发现,去重最为关键的代码为:

代码语言:javascript
复制
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

如果改成 used[i - 1] == true, 也是正确的!,去重代码如下:

代码语言:javascript
复制
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用used[i - 1] == true

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

47.全排列II2

树枝上去重(used[i - 1] == true)的树型结构如下:

47.全排列II3

大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索。

总结

这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:

代码语言:javascript
复制
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

和这么写:

代码语言:javascript
复制
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

都是可以的,这也是很多同学做这道题目困惑的地方,知道used[i - 1] == false也行而used[i - 1] == true也行,但是就想不明白为啥。

所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!

是不是豁然开朗了!!

其他语言版本

java

代码语言:javascript
复制
class Solution {
    //存放结果
    List<List<Integer>> result = new ArrayList<>();
    //暂存结果
    List<Integer> path = new ArrayList<>();

    public List<List<Integer>> permuteUnique(int[] nums) {
        boolean[] used = new boolean[nums.length];
        Arrays.fill(used, false);
        Arrays.sort(nums);
        backTrack(nums, used);
        return result;
    }

    private void backTrack(int[] nums, boolean[] used) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            // used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过
            // used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过
            // 如果同⼀树层nums[i - 1]使⽤过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            //如果同⼀树⽀nums[i]没使⽤过开始处理
            if (used[i] == false) {
                used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树支重复使用
                path.add(nums[i]);
                backTrack(nums, used);
                path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复
                used[i] = false;//回溯
            }
        }
    }
}

python

代码语言:javascript
复制
class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        # res用来存放结果
        if not nums: return []
        res = []
        used = [0] * len(nums)
        def backtracking(nums, used, path):
            # 终止条件
            if len(path) == len(nums):
                res.append(path.copy())
                return
            for i in range(len(nums)):
                if not used[i]:
                    if i>0 and nums[i] == nums[i-1] and not used[i-1]:
                        continue
                    used[i] = 1
                    path.append(nums[i])
                    backtracking(nums, used, path)
                    path.pop()
                    used[i] = 0
        # 记得给nums排序
        backtracking(sorted(nums),used,[])
        return res

Go

代码语言:javascript
复制
var res [][]int
func permute(nums []int) [][]int {
 res = [][]int{}
 backTrack(nums,len(nums),[]int{})
 return res
}
func backTrack(nums []int,numsLen int,path []int)  {
 if len(nums)==0{
  p:=make([]int,len(path))
  copy(p,path)
  res = append(res,p)
 }
 used := [21]int{}//跟前一题唯一的区别,同一层不使用重复的数。关于used的思想carl在递增子序列那一题中提到过
 for i:=0;i<numsLen;i++{
  if used[nums[i]+10]==1{
   continue
  }
  cur:=nums[i]
  path = append(path,cur)
  used[nums[i]+10]=1
  nums = append(nums[:i],nums[i+1:]...)
  backTrack(nums,len(nums),path)
  nums = append(nums[:i],append([]int{cur},nums[i:]...)...)
  path = path[:len(path)-1]

 }

}

旧文链接:回溯算法:排列问题(二)

-------------end------------

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-10-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 代码随想录 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 47.全排列 II
  • 思路
  • C++代码
  • 拓展
  • 总结
  • 其他语言版本
    • java
      • python
        • Go
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档