前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Python妙用】用200行Python代码制作一个迷宫小游戏

【Python妙用】用200行Python代码制作一个迷宫小游戏

作者头像
天道Vax的时间宝藏
发布2021-08-11 15:33:27
3.4K0
发布2021-08-11 15:33:27
举报
文章被收录于专栏:用户5305560的专栏

相信大家都玩过迷宫的游戏,对于简单的迷宫,我们可以一眼就看出通路,但是对于复杂的迷宫,可能要仔细寻找好久,甚至耗费数天,然后可能还要分别从入口和出口两头寻找才能找的到通路,甚至也可能找不到通路。

虽然走迷宫问题对于我们人类来讲比较复杂,但对于计算机来说却是很简单的问题。为什么这样说呢,因为看似复杂实则是有规可循的。

我们可以这么做,携带一根很长的绳子,从入口出发一直走,如果有岔路口就走最左边的岔口,直到走到死胡同或者找到出路。如果是死胡同则退回上一个岔路口,我们称之为岔口 A,

这时进入左边第二个岔口,进入第二个岔口后重复第一个岔口的步骤,直到找到出路或者死胡同退回来。当把该岔路口所有的岔口都走了一遍,还未找到出路就沿着绳子往回走,走到岔口 A 的前一个路口 B,重复上面的步骤。

不知道你有没有发现,这其实就是一个不断递归的过程,而这正是计算机所擅长的。

上面这种走迷宫的算法就是我们常说的深度优先遍历算法,与之相对的是广度优先遍历算法。有了理论基础,下面我们就来试着用 程序来实现一个走迷宫的小程序。

生成迷宫

生成迷宫有很多种算法,常用的有递归回溯法、递归分割法和随机 Prim 算法,我们今天是用的最后一种算法。

该算法的主要步骤如下:

1、迷宫行和列必须为奇数 2、奇数行和奇数列的交叉点为路,其余点为墙,迷宫四周全是墙 3、选定一个为路的单元格(本例选 [1,1]),然后把它的邻墙放入列表 wall 4、当列表 wall 里还有墙时: 4.1、从列表里随机选一面墙,如果这面墙分隔的两个单元格只有一个单元格被访问过 4.1.1、那就从列表里移除这面墙,同时把墙打通 4.1.2、将单元格标记为已访问 4.1.3、将未访问的单元格的邻墙加入列表 wall 4.2、如果这面墙两面的单元格都已经被访问过,那就从列表里移除这面墙

我们定义一个 Maze 类,用二维数组表示迷宫地图,其中 1 表示墙壁,0 表示路,然后初始化左上角为入口,右下角为出口,最后定义下方向向量。

代码语言:javascript
复制
class Maze:
    def __init__(self, width, height):
        self.width = width
        self.height = height
        self.map = [[0 if x % 2 == 1 and y % 2 == 1 else 1 for x in range(width)] for y in range(height)]
        self.map[1][0] = 0  # 入口
        self.map[height - 2][width - 1] = 0  # 出口
        self.visited = []
        # right up left down
        self.dx = [1, 0, -1, 0]
        self.dy = [0, -1, 0, 1]

接下来就是生成迷宫的主函数了。

代码语言:javascript
复制
def generate(self):
    start = [1, 1]
    self.visited.append(start)
    wall_list = self.get_neighbor_wall(start)
    while wall_list:
        wall_position = random.choice(wall_list)
        neighbor_road = self.get_neighbor_road(wall_position)
        wall_list.remove(wall_position)
        self.deal_with_not_visited(neighbor_road[0], wall_position, wall_list)
        self.deal_with_not_visited(neighbor_road[1], wall_position, wall_list)

该函数里面有两个主要函数 get_neighbor_road(point)deal_with_not_visited(),前者会获得传入坐标点 point 的邻路节点,返回值是一个二维数组,后者deal_with_not_visited() 函数处理步骤 4.1 的逻辑。

由于 Prim 随机算法是随机的从列表中的所有的单元格进行随机选择,新加入的单元格和旧加入的单元格被选中的概率是一样的,因此其分支较多,生成的迷宫较复杂,难度较大,当然看起来也更自然些。生成的迷宫。

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1] [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] [1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1] [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1] [1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1] [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1] [1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1] [1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

走出迷宫

得到了迷宫的地图,接下来就按照我们文首的思路来走迷宫即可。主要函数逻辑如下:

代码语言:javascript
复制
def dfs(self, x, y, path, visited=[]):
    # outOfIndex
    if self.is_out_of_index(x, y):
        return False

    # visited or is wall
    if [x, y] in visited or self.get_value([x, y]) == 1:
        return False

    visited.append([x, y])
    path.append([x, y])

    # end...
    if x == self.width - 2 and y == self.height - 2:
        return True

    # recursive
    for i in range(4):
        if 0 < x + self.dx[i] < self.width - 1 and 0 < y + self.dy[i] < self.height - 1 and \
                self.get_value([x + self.dx[i], y + self.dy[i]]) == 0:
            if self.dfs(x + self.dx[i], y + self.dy[i], path, visited):
                return True
            elif not self.is_out_of_index(x, y) and path[-1] != [x, y]:
                path.append([x, y])

很明显,这就是一个典型的递归程序。当该节点坐标越界、该节点被访问过或者该节点是墙壁的时候,直接返回,因为该节点肯定不是我们要找的路径的一部分,否则就将该节点加入被访问过的节点和路径的集合中。

然后如果该节点是出口则表示程序执行结束,找到了通路。不然就遍历四个方向向量,将节点的邻路传入函数 dfs 继续以上步骤,直到找到出路或者程序所有节点都遍历完成。

来看看我们 dfs 得出的路径结果:

[[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [7, 1], [8, 1], [9, 1], [9, 1], [8, 1], [7, 1], [6, 1], [5, 1], [5, 2], [5, 3], [6, 3], [7, 3], [8, 3], [9, 3], [9, 4], [9, 5], [9, 5], [9, 4], [9, 3], [8, 3], [7, 3], [7, 4], [7, 5], [7, 5], [7, 4], [7, 3], [6, 3], [5, 3], [4, 3], [3, 3], [2, 3], [1, 3], [1, 3], [2, 3], [3, 3], [3, 4], [3, 5], [2, 5], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 9], [1, 8], [1, 7], [1, 6], [1, 5], [2, 5], [3, 5], [3, 6], [3, 7], [3, 8], [3, 9], [3, 9], [3, 8], [3, 7], [3, 6], [3, 5], [3, 4], [3, 3], [4, 3], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [6, 7], [7, 7], [8, 7], [9, 7], [9, 8], [9, 9], [10, 9]]

可视化

有了迷宫地图和通路路径,剩下的工作就是将这些坐标点渲染出来。今天我们用的可视化库是pyxel,这是一个用来写像素级游戏的 Python 库,

当然使用前需要先安装下这个库。

Win 用户直接用 pip install -U pyxel命令安装即可。

Mac 用户使用以下命令安装:

代码语言:javascript
复制
brew install python3 gcc sdl2 sdl2_image gifsicle
pip3 install -U pyxel

先来看个简单的 Demo。

代码语言:javascript
复制
import pyxel

class App:
    def __init__(self):
        pyxel.init(160, 120)
        self.x = 0
        pyxel.run(self.update, self.draw)

    def update(self):
        self.x = (self.x + 1) % pyxel.width

    def draw(self):
        pyxel.cls(0)
        pyxel.rect(self.x, 0, 8, 8, 9)

App()

类 App 的执行逻辑就是不断的调用 update 函数和 draw 函数,因此可以在 update 函数中更新物体的坐标,然后在 draw 函数中将图像画到屏幕即可。

如此我们就先把迷宫画出来,然后在渲染 dfs 遍历动画。

代码语言:javascript
复制
width, height = 37, 21
my_maze = Maze(width, height)
my_maze.generate()

class App:
    def __init__(self):
        pyxel.init(width * pixel, height * pixel)
        pyxel.run(self.update, self.draw)

    def update(self):
        if pyxel.btn(pyxel.KEY_Q):
            pyxel.quit()

        if pyxel.btn(pyxel.KEY_S):
            self.death = False

    def draw(self):
        # draw maze
        for x in range(height):
            for y in range(width):
                color = road_color if my_maze.map[x][y] is 0 else wall_color
                pyxel.rect(y * pixel, x * pixel, pixel, pixel, color)
        pyxel.rect(0, pixel, pixel, pixel, start_point_color)
        pyxel.rect((width - 1) * pixel, (height - 2) * pixel, pixel, pixel, end_point_color)

App()

看起来还可以,这里的宽和高我分别用了 37 和 21 个像素格来生成,所以生成的迷宫不是很复杂,如果像素点很多的话就会错综复杂了。

接下里来我们就需要修改 update 函数和 draw 函数来渲染路径了。为了方便操作,我们在 init 函数中新增几个属性。

代码语言:javascript
复制
self.index = 0
self.route = [] # 用于记录待渲染的路径
self.step = 1 # 步长,数值越小速度越快,1:每次一格;10:每次 1/10 格
self.color = start_point_color
self.bfs_route = my_maze.bfs_route()

其中 index 和 step 是用来控制渲染速度的,在 draw 函数中 index 每次自增 1,然后再对 step 求余数得到当前的真实下标 real_index,简言之就是 index 每增加 step,real_index 才会加一,渲染路径向前走一步。

代码语言:javascript
复制
def draw(self):
    # draw maze
    for x in range(height):
        for y in range(width):
            color = road_color if my_maze.map[x][y] is 0 else wall_color
            pyxel.rect(y * pixel, x * pixel, pixel, pixel, color)
    pyxel.rect(0, pixel, pixel, pixel, start_point_color)
    pyxel.rect((width - 1) * pixel, (height - 2) * pixel, pixel, pixel, end_point_color)

    if self.index > 0:
        # draw route
        offset = pixel / 2
        for i in range(len(self.route) - 1):
            curr = self.route[i]
            next = self.route[i + 1]
            self.color = backtrack_color if curr in self.route[:i] and next in self.route[:i] else route_color
            pyxel.line(curr[0] + offset, (curr[1] + offset), next[0] + offset, next[1] + offset, self.color)
        pyxel.circ(self.route[-1][0] + 2, self.route[-1][1] + 2, 1, head_color)

def update(self):
    if pyxel.btn(pyxel.KEY_Q):
        pyxel.quit()

    if pyxel.btn(pyxel.KEY_S):
        self.death = False

    if not self.death:
        self.check_death()
        self.update_route()

def check_death(self):
    if self.dfs_model and len(self.route) == len(self.dfs_route) - 1:
        self.death = True
    elif not self.dfs_model and len(self.route) == len(self.bfs_route) - 1:
        self.death = True

def update_route(self):
    index = int(self.index / self.step)
    self.index += 1
    if index == len(self.route):  # move
        if self.dfs_model:
            self.route.append([pixel * self.dfs_route[index][0], pixel * self.dfs_route[index][1]])
        else:
            self.route.append([pixel * self.bfs_route[index][0], pixel * self.bfs_route[index][1]])

App()

至此,我们完整的从迷宫生成,到寻找路径,再到路径可视化已全部实现。直接调用主函数 App() 然后按 S 键盘开启游戏,就可以看到文首的效果了。

总结

今天我们用深度优先算法实现了迷宫的遍历,对于新手来说,递归这思路可能比较难理解,但这才是符合计算机思维的,随着经验的加深会理解越来越深刻的。

其次我们用 pyxel 库来实现路径可视化,难点在于坐标的计算更新,细节比较多且繁琐,当然读者也可以用其他库或者直接用网页来实现也可以。

游戏源码:

https://github.com/JustDoPython/python-examples/blob/master/doudou/2020-06-12-maze/maze.py

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021/03/28 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 生成迷宫
  • 走出迷宫
  • 可视化
  • 总结
相关产品与服务
云开发 CloudBase
云开发(Tencent CloudBase,TCB)是腾讯云提供的云原生一体化开发环境和工具平台,为200万+企业和开发者提供高可用、自动弹性扩缩的后端云服务,可用于云端一体化开发多种端应用(小程序、公众号、Web 应用等),避免了应用开发过程中繁琐的服务器搭建及运维,开发者可以专注于业务逻辑的实现,开发门槛更低,效率更高。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档