前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >K-means算法的改进:K-means++

K-means算法的改进:K-means++

作者头像
大数据技术与机器学习
发布2021-05-11 12:23:48
9610
发布2021-05-11 12:23:48
举报
文章被收录于专栏:机器学习入门与实战

由于 K-means 算法的分类结果会受到初始点的选取而有所区别,因此有提出这种算法的改进: K-means++

算法步骤

其实这个算法也只是对初始点的选择有改进而已,其他步骤都一样。初始质心选取的基本思路就是,初始的聚类中心之间的相互距离要尽可能的远。

算法描述如下:

  • 步骤一:随机选取一个样本作为第一个聚类中心 c1;
  • 步骤二:计算每个样本与当前已有类聚中心最短距离(即与最近一个聚类中心的距离),用D(x)表示;这个值越大,表示被选取作为聚类中心的概率较大;最后,用轮盘法选出下一个聚类中心;
  • 步骤三:重复步骤二,知道选出 k 个聚类中心。
  • 选出初始点后,就继续使用标准的 k-means 算法了。
  • 效率
  • K-means++ 能显著的改善分类结果的最终误差。尽管计算初始点时花费了额外的时间,但是在迭代过程中,k-mean 本身能快速收敛,因此算法实际上降低了计算时间。网上有人使用真实和合成的数据集测试了他们的方法,速度通常提高了 2 倍,对于某些数据集,误差提高了近 1000 倍。
  • python实现
  • 这里只说明初始点筛选的代码,因为其他步骤和k-means 一样:
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-05-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习入门与实战 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 算法步骤
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档