前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用 OpenMVG+PMVS实现视觉三维重建

使用 OpenMVG+PMVS实现视觉三维重建

作者头像
3D视觉工坊
发布2020-12-03 11:35:36
6.8K0
发布2020-12-03 11:35:36
举报
文章被收录于专栏:3D视觉从入门到精通

一、什么是视觉三维重建?

我们知道,照相机的原理是将一个三维场景投影到二维平面。所谓视觉三维重建,顾名思义就是从已有的二维图像中复原原始三维场景。

三维重建的原理大致如下:

  • 首先,通过多角度拍摄或者从视频中提取得到一组图像序列,将这些图像序列作为三维重建系统的输入;
  • 然后分析多个视角的图像,根据纹理特征提取出稀疏特征点(稀疏点云),通过这些特征点估计相机位置和参数;
  • 在得到相机参数并完成特征点匹配后,就可以获得更稠密的点云(这些点可以附带颜色,从远处看就像还原了物体本身一样,但从近处能明显看出它们只是一些点);
  • 最后根据这些点重建物体表面,并进行纹理映射,就还原出三维场景和物体了。

基于图像的三维重建基本流程

多张图像的特征点匹配

多视图稠密重建(MVS)

目前,有不少开源的三维重建系统,本文简单介绍使用OpenMVG(有CUDA的可以用colmap)+PMVS(OpenMVS安装的坑比较多),实现三维场景的三维重建。

二、OpenMVG/PMVS概述

openMVG (Open Multiple View Geometry):开源多视角立体几何库,这是一个 cv 界处理多视角立体几何的著名开源库,信奉“简单,可维护”,提供了一套强大的接口,每个模块都被测试过,尽力提供一致可靠的体验。

openMVG 实现以下典型应用:

  • 解决多视角立体几何的精准匹配问题;
  • 提供一系列 SfM 需要用到的特征提取和匹配方法;
  • 完整的 SfM 工具链(校正,参估,重建,表面处理等);
  • openMVG 尽力提供可读性性强的代码,方便开发者二次开发,核心功能是尽量精简的,所以你可能需要其它库来完善你的系统。

CMVS-PMVS(a modified version):将运动结构(SfM)软件的输出作为输入,然后将输入图像分解成一组可管理大小的图像簇。MVS 软件可以用来独立和并行地处理每个簇,其中来自所有簇的重建不错过任何细节。

常见的多视图三维重建管线:重建稀疏点云-Structure from Motion(Sfm)→重建稠密点云-Multi-View Stereo(MSV)→重建表面-Surface Generation(SG)→纹理映射-Texture Mapping(TM)

在本文中,OpenMVG负责从原始图像到稀疏点云,PMVS负责重建稠密点云、重建表面和纹理映射。我这里还使用了Meshlab查看模型(点云)生成效果。

三、安装OpenMVG+PMVS(Ubuntu16)

OpenMVG安装过程:(参考:openMVG官方BUILD.md)

代码语言:javascript
复制
# 安装依赖
sudo apt-get install libpng-dev libjpeg-dev libtiff-dev libxxf86vm1 libxxf86vm-dev libxi-dev libxrandr-dev graphviz

# 克隆代码
git clone --recursive https://github.com/openMVG/openMVG.git

# configure && build
mkdir openMVG_Build && cd openMVG_Build
cmake -DCMAKE_BUILD_TYPE=RELEASE ../openMVG/src/   -DOpenMVG_BUILD_TESTS=ON
sudo cmake --build . --target install

# test
make test
ctest --output-on-failure -j

# .bashrc
export PATH=$PATH:/home/work/tools/openMVG_Build/Linux-x86_64-RELEASE/


CMVS-PMVS安装过程:

代码语言:javascript
复制
git clone https://github.com/pmoulon/CMVS-PMVS.git
cd CMVS-PMVS
mkdir build && cd build
cmake ../program/
make
sudo cp main/pmvs2 main/genOption main/cmvs /usr/local/bin/

四、三维重建实例(城堡)

1. OpenMVG提取稀疏点云(参考:openMVG使用示例)

原始数据:11张从不同角度拍摄的城堡照片

openMVG提取稀疏点云过程:(参考openMVG_Build/software/SfM/tutorial_demo.py,测试图片和脚本:openmvg_test.tar)

代码语言:javascript
复制
cd openMVG
vim 3dr_test.py

#!/usr/bin/python
#! -*- encoding: utf-8 -*-
# openmvg使用示例
# usage : python tutorial_demo.py

import os
import subprocess
import sys

# openmvg编译bin目录(可cp -p到/usr/local/bin/)
OPENMVG_SFM_BIN = "/home/work/tools/openMVG_Build/Linux-x86_64-RELEASE"
# pmvs编译bin目录(可cp -p到/usr/local/bin/)
PMVS_BIN = "/home/work/tools/CMVS-PMVS/build/main"
# openmvg相机参数目录
CAMERA_SENSOR_WIDTH_DIRECTORY = "/home/work/tools/openMVG/src/openMVG/exif/sensor_width_database"


# 0. 下载测试照片
os.chdir(os.path.dirname(os.path.abspath(__file__)))
data_dir = os.path.abspath("./book")
#data_dir = os.path.abspath("./ImageDataset_SceauxCastle")
'''if not os.path.exists(data_dir):
  pImageDataCheckout = subprocess.Popen([ "git", "clone", "https://github.com/openMVG/ImageDataset_SceauxCastle.git" ])
  pImageDataCheckout.wait()'''
input_dir = os.path.join(data_dir, "images")
output_dir = data_dir
print ("Using input dir  : ", input_dir)
print ("      output_dir : ", output_dir)
matches_dir = os.path.join(output_dir, "matches")
camera_file_params = os.path.join(CAMERA_SENSOR_WIDTH_DIRECTORY, "sensor_width_camera_database.txt")    #相机参数
if not os.path.exists(matches_dir):
  os.mkdir(matches_dir)

# 1. 从图片数据集中生成场景描述文件sfm_data.json
print ("----------1. Intrinsics analysis----------")
pIntrisics = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_SfMInit_ImageListing"),  "-i", input_dir, "-o", matches_dir, "-d", camera_file_params, "-c", "3"] )
#*注:如果产出的sfm_data.json里intrinsics内容为空,通常是在图片没有exif信息导致获取不到相机焦距、ccd尺寸等参数,用带exif的原图即可。
pIntrisics.wait()

# 2. 计算图像特征
print ("----------2. Compute features----------")
pFeatures = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeFeatures"),  "-i", matches_dir+"/sfm_data.json", "-o", matches_dir, "-m", "SIFT", "-f" , "1"] )
pFeatures.wait()

# 3. 计算几何匹配
print ("----------3. Compute matches----------")
pMatches = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeMatches"),  "-i", matches_dir+"/sfm_data.json", "-o", matches_dir, "-f", "1", "-n", "ANNL2"] )
pMatches.wait()

# 4. 执行增量三维重建
reconstruction_dir = os.path.join(output_dir,"reconstruction_sequential")
print ("----------4. Do Incremental/Sequential reconstruction----------") #set manually the initial pair to avoid the prompt question
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_IncrementalSfM"),  "-i", matches_dir+"/sfm_data.json", "-m", matches_dir, "-o", reconstruction_dir] )
pRecons.wait()

# 5. 计算场景结构颜色
print ("----------5. Colorize Structure----------")
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeSfM_DataColor"),  "-i", reconstruction_dir+"/sfm_data.bin", "-o", os.path.join(reconstruction_dir,"colorized.ply")] )
pRecons.wait()

# 6. 测量稳健三角
print ("----------6. Structure from Known Poses (robust triangulation)----------")
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeStructureFromKnownPoses"),  "-i", reconstruction_dir+"/sfm_data.bin", "-m", matches_dir, "-o", os.path.join(reconstruction_dir,"robust.ply")] )
pRecons.wait()

'''
# 使用全局SfM管道重建Reconstruction for the global SfM pipeline
# 3.1 全局sfm管道几何匹配
print ("----------3.1. Compute matches (for the global SfM Pipeline)----------")
pMatches = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeMatches"),  "-i", matches_dir+"/sfm_data.json", "-o", matches_dir, "-r", "0.8", "-g", "e"] )
pMatches.wait()

# 4.1 执行全局三维重建
reconstruction_dir = os.path.join(output_dir,"reconstruction_global")
print ("----------4.1. Do Global reconstruction----------")
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_GlobalSfM"),  "-i", matches_dir+"/sfm_data.json", "-m", matches_dir, "-o", reconstruction_dir] )
pRecons.wait()

# 5.1 计算场景结构颜色
print ("----------5.1. Colorize Structure----------")
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeSfM_DataColor"),  "-i", reconstruction_dir+"/sfm_data.bin", "-o", os.path.join(reconstruction_dir,"colorized.ply")] )
pRecons.wait()

# 6.1 测量稳健三角
print ("----------6.1. Structure from Known Poses (robust triangulation)----------")
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_ComputeStructureFromKnownPoses"),  "-i", reconstruction_dir+"/sfm_data.bin", "-m", matches_dir, "-o", os.path.join(reconstruction_dir,"robust.ply")] )
pRecons.wait()
'''

# 7. 把openMVG生成的SfM_Data转为适用于PMVS输入格式的文件
print ("----------7. Export to PMVS/CMVS----------")
pRecons = subprocess.Popen( [os.path.join(OPENMVG_SFM_BIN, "openMVG_main_openMVG2PMVS"),  "-i", reconstruction_dir+"/sfm_data.bin", "-o", reconstruction_dir] )
pRecons.wait()
#*注:执行后会在-o路径下生成一个PMVS目录,包含 models, txt, visualize 三个子目录:models为空;txt包含对应图像的txt文档,每个里面都是一个3x4的矩阵,大概是相机位姿;visualize包含11张图像,不确定是原图像还是校正过的图像

# 8. 使用PMVS重建稠密点云、表面、纹理
print ("----------8. pmvs2----------")
pRecons = subprocess.Popen( [os.path.join(PMVS_BIN, "pmvs2"),  reconstruction_dir+"/PMVS/", "pmvs_options.txt"] )  # 注:不要修改pmvs_options.txt文件名
pRecons.wait()
#*注:执行后会在./PMVS/models文件夹中生成一个pmvs_options.txt.ply点云文件,用meshlab打开即可看到重建出来的彩色稠密点云。


#执行三维重建测试
python 3dr_test.py

2.安装MeshLab,查看生成的稀疏点云文件:

下载安装:http://www.meshlab.net/#download

右上方俯视城堡稀疏点云 :(打开reconstruction_xxx下的colorized.ply或robust.ply)

3.PMVS重建稠密点云、重建表面和纹理映射过程:(测试生成的PMVS目录:pmvs_test.tar)

代码语言:javascript
复制
# 1.  把openMVG生成的SfM_Data转为适用于PMVS输入格式的文件
cd openMVG/ImageDataset_SceauxCastle/reconstruction_global/
openMVG_main_openMVG2PMVS -i sfm_data.bin -o ./
*注:执行后会在-o路径下生成一各PMVS目录,包含 models, txt, visualize 三个子目录:models为空;txt包含对应图像的txt文档,每个里面都是一个3x4的矩阵,大概是相机位姿;visualize包含11张图像,不确定是原图像还是校正过的图像

# 2. 使用PMVS重建稠密点云、表面、纹理
pmvs2 ./PMVS/ pmvs_options.txt    # 注:不要修改pmvs_options.txt文件名
*注:执行后会在./PMVS/models文件夹中生成一个pmvs_options.txt.ply点云文件,用meshlab打开即可看到重建出来的彩色稠密点云。

生成的三维稠密点云俯视角:

五、三维重建实例(书)

1.准备照片

注意事项:

  • 自己拍的照片必须确保照片里有exif信息!(光圈、焦距、品牌、ccd尺寸等),定位拍摄姿态和角度等用,没有会很麻烦;不要用微信/Hi等工具传,exif信息会丢失(选原图也会丢),亲测AirDrop(隔空投送)是不会丢的;
  • 照片最少准备3张以上,否则大概率重建失败;

拿手边的书随便拍了几张:book.zip

2.三维重建

代码语言:javascript
复制
python 3dr_test.py

六、常见问题

1.openMVG_main_IncrementalSfM: error while loading shared libraries: liblapack.so: cannot open shared object file: No such file or directory

解决方法:

代码语言:javascript
复制
$ which openMVG_main_IncrementalSfM
/usr/local/bin/openMVG_main_IncrementalSfM
$ ll openMVG_Build/Linux-x86_64-RELEASE/openMVG_main_IncrementalSfM
openMVG_Build/Linux-x86_64-RELEASE/openMVG_main_IncrementalSfM
#经过对比测试发现/usr里确实是最新build的文件,但链接关系貌似有问题;直接使用openMVG_Build/Linux-x86_64-RELEASE/openMVG_main_IncrementalSfM就能正常
$ sudo cp ../openMVG_Build/Linux-x86_64-RELEASE/*  /usr/local/bin/   #整体cp覆盖后恢复正常

2.type INITIAL pair ids: X enter Y enter

代码语言:javascript
复制
----------------------------------------------------
SequentialSfMReconstructionEngine::ChooseInitialPair
----------------------------------------------------
 Pairs that have valid intrinsic and high support of points are displayed:
 Choose one pair manually by typing the two integer indexes
----------------------------------------------------

(1,5)		77 matches
(2,4)		39 matches
(0,2)		39 matches
(3,7)		31 matches
(2,5)		29 matches
(2,3)		19 matches
(0,1)		18 matches

 type INITIAL pair ids: X enter Y enter
2
4

Putative starting pair is: (2,4)
A-Contrario initial pair residual: 7.61613

SfM过程中遇到这个提示,可以按以上方式输入跳过,不过通常这时照片的质量堪忧,不要指望建出来预期的效果了,不如老老实实多重拍些,用视频切桢也行。

七、其他

生成的三维点云数据如果要用于自动驾驶避障,最好增加超声波、毫米波雷达,并把各传感器生成的点云与视觉重建点云进行融合。对融合后的点云数据进行噪点清理、三维目标检测,生成三维障碍物的类型/大小/位置信息,再根据三维空间的行进方向进行避障路径规划。

本文仅做学术分享,如有侵权,请联系删文。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 3D视觉工坊 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、什么是视觉三维重建?
  • 二、OpenMVG/PMVS概述
  • 三、安装OpenMVG+PMVS(Ubuntu16)
  • 四、三维重建实例(城堡)
  • 五、三维重建实例(书)
  • 六、常见问题
  • 七、其他
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档