前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >漫画算法题:两数之和与三数之和

漫画算法题:两数之和与三数之和

作者头像
小灰
发布2020-10-27 10:57:57
6420
发布2020-10-27 10:57:57
举报
文章被收录于专栏:程序员小灰

前一段时间,小灰分别讲解了两道leecode上的经典算法题:

漫画:如何在数组中找到和为 “特定值” 的两个数?

漫画:如何在数组中找到和为 “特定值” 的三个数?

今天,小灰把这两道题整合起来,并修改了其中的细节问题,感谢大家的指正。

————— 第二天 —————

什么意思呢?我们来举个例子,给定下面这样一个整型数组(假定数组不存在重复元素):

我们随意选择一个特定值,比如13,要求找出两数之和等于13的全部组合。

由于12+1 = 13,6+7 = 13,所以最终的输出结果(输出的是下标)如下:

【1, 6】

【2, 7】

小灰想表达的思路,是直接遍历整个数组,每遍历到一个元素,就和其他元素相加,看看和是不是等于那个特定值。

第1轮,用元素5和其他元素相加:

没有找到符合要求的两个元素。

第2轮,用元素12和其他元素相加:

发现12和1相加的结果是13,符合要求。

按照这个思路,一直遍历完整个数组。

————————————

让我们来具体演示一下:

第1轮,访问元素5,计算出13-5=8。在哈希表中查找8,发现查不到:

第2轮,访问元素12,计算出13-12=1。在哈希表中查找1,查到了元素1的下标是6,所以元素12(下标是1)和元素1(下标是6)是一对结果:

第3轮,访问元素6,计算出13-6=7。在哈希表中查找7,查到了元素7的下标是7,所以元素6(下标是2)和元素7(下标是7)是一对结果:

按照这个思路,一直遍历完整个数组即可。

代码语言:javascript
复制
public class FindSumNumbers {

    public static List<List<Integer>> twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        List<List<Integer>> resultList = new ArrayList<>();
        for (int i = 1; i < nums.length; i++) {
            map.put(nums[i], i);
        }
        for (int i = 0; i < nums.length; i++) {
            int other = target - nums[i];
            if (map.containsKey(other) && map.get(other) != i) {
                resultList.add(Arrays.asList(i,map.get(other)));
                //为防止找到重复的元素对,匹配后从哈希表删除对应元素
                map.remove(nums[i]);
            }
        }
        return resultList;
    }

    public static void main(String[] args) {
        int[] nums = {5,12,6,3,9,2,1,7};
        List<List<Integer>> resultList = twoSum(nums, 13);
        for(List<Integer> list : resultList){
            System.out.println(Arrays.toString(list.toArray()));
        }
    }

}
代码语言:javascript
复制
    public static List<List<Integer>> twoSumV2(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        List<List<Integer>> resultList = new ArrayList<>();
        for (int i = 0; i < nums.length; i++) {
            int other = target - nums[i];
            if (map.containsKey(other)) {
                resultList.add(Arrays.asList(map.get(other),i));
            }
            map.put(nums[i], i);
        }
        return resultList;
    }

举个例子,给定下面这样一个整型数组(假定数组不存在重复元素):

我们随意选择一个特定值,比如13,要求找出三数之和等于13的全部组合。

由于5+6+2=13, 5+1+7=13,3+9+1=13,所以最终的输出结果如下(直接输出元素值即可):

【5, 6,2】

【5, 1,7】

【3, 9,1】

小灰的思路,是把原本的“三数之和问题”,转化成求n次“两数之和问题”。

我们以上面这个数组为例,选择特定值13,演示一下小灰的具体思路:

第1轮,访问数组的第1个元素5,把问题转化成从后面元素中找出和为8(13-5)的两个数:

如何找出和为8的两个数呢?按照上一次所讲的,我们可以使用哈希表高效求解:

第2轮,访问数组的第2个元素12,把问题转化成从后面元素中找出和为1(13-12)的两个数:

第3轮,访问数组的第3个元素6,把问题转化成从后面元素中找出和为7(13-6)的两个数:

以此类推,一直遍历完整个数组,相当于求解了n次两数之和问题。

代码语言:javascript
复制
    public static List<List<Integer>> threeSum(int[] nums, int target) {
        List<List<Integer>> resultList = new ArrayList<>();
        for (int i = 0; i < nums.length; i++) {
            Map<Integer, Integer> map = new HashMap<>();
            int d1 = target - nums[i];
            //寻找两数之和等于d1的组合
            for (int j = i+1; j < nums.length; j++) {
                int d2 = d1 - nums[j];
                if (map.containsKey(d2)) {
                    resultList.add(Arrays.asList(nums[i], d2, nums[j]));
                }
                map.put(nums[j], j);
            }
        }
        return resultList;
    }

在上面的代码中,每一轮解决“两数之和问题”的时间复杂度是O(n),一共迭代n轮,所以该解法总的时间复杂度是O(n²)

至于空间复杂度,同一个哈希表被反复构建,哈希表中最多有n-1个键值对,所以该解法的空间复杂度是O(n)

我们仍然以之前的数组为例,对数组进行升序排列:

这样说起来有些抽象,我们来具体演示一下:

第1轮,访问数组的第1个元素1,把问题转化成从后面元素中找出和为12(13-1)的两个数。

如何找出和为12的两个数呢?我们设置两个指针,指针j指向剩余元素中最左侧的元素2,指针k指向最右侧的元素12:

计算两指针对应元素之和,2+12 = 14 > 12,结果偏大了。

由于数组是按照升序排列,k左侧的元素一定小于k,因此我们把指针k左移一位:

计算两指针对应元素之和,2+9 = 11< 12,这次结果又偏小了。

j右侧的元素一定大于j,因此我们把指针j右移一位:

计算两指针对应元素之和,3+9 = 12,正好符合要求!

因此我们成功找到了一组匹配的组合:1,3,9

但这并不是结束,我们要继续寻找其他组合,让指针k继续左移:

计算两指针对应元素之和,3+7 = 10< 12,结果偏小了。

于是我们让指针j右移:

计算两指针对应元素之和,5+7 = 12,又找到符合要求的一组:

1,5,7

我们继续寻找,让指针k左移:

计算两指针对应元素之和,5+6 = 11< 12,结果偏小了。

于是我们让指针j右移:

此时双指针重合在了一起,如果再继续移动,就有可能和之前找到的组合重复,因此我们直接结束本轮循环。

第2轮,访问数组的第2个元素2,把问题转化成从后面元素中找出和为11(13-2)的两个数。

我们仍然设置两个指针,指针j指向剩余元素中最左侧的元素3,指针k指向最右侧的元素12:

计算两指针对应元素之和,3+12 = 15 > 11,结果偏大了。

我们让指针k左移:

计算两指针对应元素之和,3+9 = 12 > 11,结果仍然偏大。

我们让指针k继续左移:

计算两指针对应元素之和,3+7 = 10 < 11,结果偏小了。

我们让指针j右移:

计算两指针对应元素之和,5+7 = 12 > 11,结果又偏大了。

我们让指针k左移:

计算两指针对应元素之和,5+6 = 11,于是我们又找到符合要求的一组:

2,5,6

我们继续寻找,让指针k左移:

此时双指针又一次重合在一起,我们结束本轮循环。

按照这个思路,我们一直遍历完整个数组。

像这样利用两个指针指向数组两端,不断向中间靠拢调整来寻找匹配组合的方法,就是双指针法,也被称为“夹逼法”。

代码语言:javascript
复制
    public static List<List<Integer>> threeSumv2(int[] nums, int target) {
        Arrays.sort(nums);
        List<List<Integer>> resultList = new ArrayList<List<Integer>>();
        //大循环
        for (int i = 0; i < nums.length; i++) {
            int d = target - nums[i];
            // j和k双指针循环定位,j在左端,k在右端
            for (int j=i+1,k=nums.length-1; j<nums.length; j++) {
                // k指针向左移动
                while (j<k && (nums[j]+nums[k])>d) {
                    k--;
                }
                //双指针重合,跳出本次循环
                if (j == k) {
                    break;
                }
                if (nums[j] + nums[k] == d) {
                    List<Integer> list = Arrays.asList(nums[i], nums[j], nums[k]);
                    resultList.add(list);
                }
            }
        }
        return resultList;
    }

上面这段代码表面上有三层循环,但每一轮指针j和k的移动次数加起来最多n-1次,因此该解法的整体时间复杂度是O(n²)

最关键的是,该解法并没有使用额外的集合(排序是直接在输入数组上进行的),所以空间复杂度只有O(1)

—————END—————

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-10-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序员小灰 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档