1049 数列的片段和 (20 分)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入第一行给出一个不超过 10^5 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以空格分隔。
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
4
0.1 0.2 0.3 0.4
5.00
一道数理逻辑题,暴力就不想说了,直接上结论,算每个元素被计算的次数*该元素ai的值
而每个元素被计算的次数= i*(n-i+1)
为什么呢?
解释如下:我们知道连续片段无非就是两个左右端点构成,连续片段要包含我们计算的某个元素ai,那么左端点就有i种选择,在ai及之前都可以,同理右端点有n-i+1个选择也不难理解,根据乘法原理,即得结论~
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#include<unordered_set>
#define rg register ll
#define inf 2147483647
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define ll long long
#define maxn 300005
#define lb(x) (x&(-x))
const double eps = 1e-6;
using namespace std;
inline ll read()
{
char ch = getchar(); ll s = 0, w = 1;
while (ch < 48 || ch>57) { if (ch == '-')w = -1; ch = getchar(); }
while (ch >= 48 && ch <= 57) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
return s * w;
}
inline void write(ll x)
{
if (x < 0)putchar('-'), x = -x;
if (x > 9)write(x / 10);
putchar(x % 10 + 48);
}
ll n;
double a[maxn],sum;
int main()
{
cin>>n;
for(rg i=1;i<=n;i++)cin>>a[i],sum+=a[i]*i*(n-i+1);
cout<<setiosflags(ios::fixed)<<setprecision(2)<<sum<<endl;
return 0;
}