这篇郭先生就来说说欧拉角和四元数,欧拉角和四元数的优缺点是老生常谈的话题了,使用条件我就不多说了,我只说一下使用方法。
欧拉角描述一个旋转变换,通过指定轴顺序和其各个轴向上的指定旋转角度来旋转一个物体。下面我们开看看它的方法
x - 用弧度表示x轴旋转量。y - 用弧度表示y轴旋转量。z - 用弧度表示z轴旋转量。order - (optional) 表示旋转顺序的字符串。设置该欧拉变换的角度和旋转顺序 order。
返回一个与当前参数相同的新欧拉角。
将 euler 的属性拷贝到当前对象。
m - Matrix4 矩阵上面的3x3部分是一个纯旋转矩阵rotation matrix (也就是不发生缩放)order - (可选参数) 表示旋转顺序的字符串。使用基于 order 顺序的纯旋转矩阵来设置当前欧拉角。
var vector = new THREE.Vector3(0,0,1);
var matrix = new THREE.Matrix4().makeRotationAxis(vector, Math.PI/6)
var euler = new THREE.Euler().setFromRotationMatrix(matrix); // 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}
根据 order 指定的方向,使用归一化四元数设置这个欧拉变换的角度。
var vector = new THREE.Vector3(0,0,1);
var quaternion = new THREE.Quaternion().setFromAxisAngle(vector, Math.PI/6)
var euler = new THREE.Euler().setFromQuaternion(quaternion);// 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}结果同上
设置 x, y and z 并且选择性更新 order。
var vector = new THREE.Vector3(0,0,Math.PI/6);
var euler = new THREE.Euler().setFromVector3(vector);/ 返回Euler {_x: -0, _y: 0, _z: 0.5235987755982987, _order: "XYZ"}结果同上
通过这个欧拉角创建一个四元数,然后用这个四元数和新顺序设置这个欧拉角。
检查 euler 是否与当前对象相同。
长度为3或4的一个 array 。array3 是一个可选的 order 参数。将欧拉角的x分量设置为 array0。将欧拉角的x分量设置为 array1。将欧拉角的x分量设置为 array2。将array3设置给欧拉角的 order 。可选。
返回一个数组:x, y, z, order 。
以 Vector3 的形式返回欧拉角的 x, y 和 z。
var vector = new THREE.Vector3(0,0,Math.PI/6);
var euler = new THREE.Euler().setFromVector3(vector);
euler.toVector3(); //返回Vector3 {x: 0, y: 0, z: 0.5235987755982988}
四元数对象Quaternion使用x、y、z和w四个分量表示。在三维空间中一个旋转由一个旋转轴、一个旋转角度和旋转方向来唯一确定。
假设我们默认为右手法则的旋转,则旋转方向为逆时针,旋转轴向量为v = (vx, vy, vz), 角度为旋转角度,那么该旋转就应该类似如下图所示:
其对应的四元数就是:
设置该四元数的值。
克隆此四元数。
将q的值复制到这个四元数。
用欧拉角指定的旋转来设置此四元数。
var euler = new THREE.Euler(0,0,Math.PI/6);
var quaternion = new THREE.Quaternion().setFromEuler(euler) //返回Quaternion {_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
使用由轴和角度指定的旋转来设置此四元数。axis 应该是归一化的,angle 的单位是弧度。
var vector1 = new THREE.Vector3(0,0,1);
var vector2 = new THREE.Vector3(0,0,2);
var quaternion1 = new THREE.Quaternion().setFromAxisAngle(vector1, Math.PI/6); //返回Quaternion {_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
var quaternion2 = new THREE.Quaternion().setFromAxisAngle(vector2, Math.PI/6); //返回Quaternion {_x: 0, _y: 0, _z: 0.5176380902050415, _w: 0.9659258262890683}
可见axis是否归一化对四元数的x、y和z值的影响是线性的。
从m的旋转分量来设置该四元数。使用很简单就不多说了。
通过从向量vFrom到vTo所需的旋转来设置这四元数。vFrom 和 vTo 应该是归一化的。我们来看一下
var vector1 = new THREE.Vector3(1,1,0);
var vector2 = new THREE.Vector3(0,1,0);
var quaternion = new THREE.Quaternion().setFromUnitVectors(vector1, vector2); //相当于绕z轴旋转了Math.PI/4
返回这个四元数到q的角度
var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/3));
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6));
quaternion1.angleTo(quaternion2); // 返回0.5235987755982987
将此四元数按给定的step旋转到定义的四元数q。该方法确保最终四元数不会超出q。那么是什么意思呢?
var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/3)); //{_x: 0, _y: 0, _z: 0.49999999999999994, _w: 0.8660254037844387}
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6)); //{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
quaternion1.rotateTowards( quaternion2, 0); //{_x: 0, _y: 0, _z: 0.49999999999999994, _w: 0.8660254037844387}
quaternion1.rotateTowards( quaternion2, 0.5); //{_x: 0, _y: 0, _z: 0.2701980971440553, _w: 0.9628047508709812}
quaternion1.rotateTowards( quaternion2, 1); //{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
可以看出其内部使用了quaternion.slerp()方法。
转置此四元数-计算共轭。假设四元数具有单位长度。
var quaternion = new THREE.Quaternion().setFromEuler(new THREE.Euler(Math.PI/6,Math.PI/6,Math.PI/6)); //初始四元数Quaternion {_x: 0.30618621784789724, _y: 0.17677669529663687, _z: 0.30618621784789724, _w: 0.8838834764831845}
quaternion.inverse(); //返回Quaternion {_x: -0.30618621784789724, _y: -0.17677669529663687, _z: -0.30618621784789724, _w: 0.8838834764831845}
由此可知计算共轭之后,x、y和z分别取复制,而w值不变。
返回此四元数的旋转共轭。四元数的共轭。表示旋转轴在相反方向上的同一个旋转。经过我的测试这个方法和inverse()方法是一样的,来看看inverse的源码
inverse: function () {
// quaternion is assumed to have unit length
return this.conjugate();
},
计算四元数v和当前四元数的点积。众所周知点积得到的是一个数字。很简单
计算四元数的平方长度。就是各个值平方求和。
计算此四元数的长度。也就是各个值平方求和,然后在开根号。
归一化该四元数。开看下源码
normalize: function () {
var l = this.length();
if ( l === 0 ) { //如果四元数参length为0,那么this._x、this._y和this._z都设置为0,this._w设置为1
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else { //如果四元数参length为l,那么四元数的各个参数乘以l的倒数。
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
return this;
},
把该四元数和q相乘。具体怎么相乘。稍后再说。
使用q左乘以(pre-multiply)该四元数。同样稍后再说。
四元数a乘以四元数b,我们说一下四元数的乘法。
multiplyQuaternions: function ( a, b ) {
var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
return this;
},
比较v和这个四元数的各个分量,以确定两者是否代表同样的旋转。不多说。
处理四元数之间的球面线性插值。t 代表quaternionA(这里t为0)和quaternionB(这里t为1)这两个四元数之间的旋转量。quaternion 被设置为结果。rotateTowards的底层同样使用了slerp方法。
var quaternion1 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/6));
var quaternion2 = new THREE.Quaternion().setFromEuler(new THREE.Euler(0,0,Math.PI/2));
quaternion1; //quaternion1的值为{_x: 0, _y: 0, _z: 0.25881904510252074, _w: 0.9659258262890683}
quaternion2; //quaternion2的值为{_x: 0, _y: 0, _z: 0.7071067811865475, _w: 0.7071067811865476}
quaternion1.slerp(quaternion2, 0) //返回的结果和quaternion1相同
quaternion1.slerp(quaternion2, 1) //返回的结果和quaternion2相同
quaternion1.slerp(quaternion2, 其他值) //返回quaternion1到quaternion2的插值,当然这个t也是可以大于1的
//看一下rotateTowards的部分源码
rotateTowards: function ( q, step ) {
var angle = this.angleTo( q );
if ( angle === 0 ) return this;
var t = Math.min( 1, step / angle );
this.slerp( q, t );
return this;
}
这是slerp的静态方法,无需动态设置。同样使用了slerp方法。
slerp: function ( qa, qb, qm, t ) {
return qm.copy( qa ).slerp( qb, t );
}
关于欧拉角四元数要说的差不多就这些,还需要平时多多应用才能记熟。
转载请注明地址:郭先生的博客