前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >一道腾讯算法题,拿好不谢~

一道腾讯算法题,拿好不谢~

作者头像
五分钟学算法
发布2020-06-28 15:51:50
3630
发布2020-06-28 15:51:50
举报
文章被收录于专栏:五分钟学算法

大家好,我是程序员吴师兄。

今天分享的题目来源于 LeetCode 上的剑指 Offer 系列 面试题11.旋转数组的最小数字。根据统计,在腾讯的算法面试环节出现频率较高,属于简单中等难度。

题目链接:https://leetcode-cn.com/problems/xuan-zhuan-shu-zu-de-zui-xiao-shu-zi-lcof

一、题目描述

把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组[3,4,5,1,2][1,2,3,4,5] 的一个旋转,该数组的最小值为 1。

示例 1:

代码语言:javascript
复制
输入:[3,4,5,1,2]
输出:1

示例 2:

代码语言:javascript
复制
输入:[2,2,2,0,1]
输出:0

二、题目解析

这道题最直观的解法是 从头到尾遍历数组一次,轻轻松松就能找出最小的元素。

这种思路的时间复杂度显然是 O(n)

很显然,这种做法 没有利用输入的旋转数组的特性,所以在面试环节面试官肯定会问你:还能优化一下吗?

一般的,O(n) 复杂度的优化我们都是往 二分查找 这个思路上去考虑的。

设置 start, end 指针分别指向 numbers 数组左右两端,取它们的中点 mid = (start + end ) / 2,然后将 numbers[mid]numbers[end] 进行对比:

1、当 numbers[mid] > numbers[end]

此时,mid 在 左排序数组 中,而旋转点 x 一定在 [ mid + 1,end ] 闭区间内,所以接下来的操作是在 [ mid + 1,end ] 区间内寻找旋转点,相应的,改变 start 的值为 mid + 1。

2、numbers[mid] < numbers[end]

此时,mid 在 右排序数组 中,而旋转点 x 一定在 [ start,mid ] 闭区间内,所以接下来的操作是在 [ start,mid ] 区间内寻找旋转点,相应的,改变 end 的值为 mid 。

3、numbers[mid] = numbers[end]

三、动画描述

四、图片描述

五、参考代码

代码语言:javascript
复制
class Solution {
    public int minArray(int[] numbers) {
        //设置 start, end 指针分别指向 numbers 数组左右两端
        int start = 0, end = numbers.length - 1;

        //循环判断处理,直到找到结果
        while (start < end) {

            // mid 为中点(这里向下取整,比如 ( 2 + 7 )/ 2 = 4 )
            int mid = (start + end) / 2;

            //当 mid 点所在元素大于数组末端的元素时,这意味着 [start , mid] 是有序的数组
            if (numbers[mid] > numbers[end]){

                // 所以旋转点在 [ mid + 1, end ] 区间里面 ,更新 start 的位置为 mid + 1
                start = mid + 1;

            }else if (numbers[mid] < numbers[end]){

                // 当 mid 点所在元素小于数组开始端的元素时,这意味着 [mid , end] 是有序的数组
                // 所以旋转点在 [ start, mid ] 区间里面 ,更新 end 的位置为 mid 
                end = mid;

                //思考题?:为什么 start 是更新为 mid + 1,而 end 却是更新为 mid

            }else{

                //此时,出现了 numbers[mid] = numbers[end] 的情况,无法判断 
                //    [ start , mid ]  为有序数组区间
                //  还是  [ mid , end ]  为有序数组区间
                //  比如: [1, 0, 1, 1, 1] 和  [1, 1, 1, 0, 1]
                //  所以这里采取遍历的方式
                return findMin(numbers,start,end);

            }
        }
        return numbers[start];
    }


     public int findMin(int[] numbers,int start,int end){

        int result = numbers[start];

        for(int i = start;i <= end;i++){

            if (numbers[i] < result) {
                result = numbers[i];
            }
        }
        return result;
    }
}

六、复杂度分析

时间复杂度

时间复杂度为 O(log2N)。

空间复杂度

空间复杂度为 O(1)。

七、相关标签

  • 二分查找
  • 数组
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-06-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 五分钟学算法 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、题目描述
  • 二、题目解析
    • 1、当 numbers[mid] > numbers[end]
      • 2、numbers[mid] < numbers[end]
        • 3、numbers[mid] = numbers[end]
        • 三、动画描述
        • 四、图片描述
        • 五、参考代码
        • 六、复杂度分析
          • 时间复杂度
            • 空间复杂度
            • 七、相关标签
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档