概 述
量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。对照于传统的通用计算机,其理论模型是通用图灵机;通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。从可计算的问题来看,量子计算机只能解决传统计算机所能解决的问题,但是从计算的效率上,由于量子力学叠加性的存在,目前某些已知的量子算法在处理问题时速度要快于传统的通用计算机。
基 本 原 理
量子力学态叠加原理使得量子信息单元的状态可以处于多种可能性的叠加状态,从而导致量子信息处理从效率上相比于经典信息处理具有更大潜力。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四种状态的叠加状态。随着量子比特数目的增加,对于n个量子比特而言,量子信息可以处于2种可能状态的叠加,配合量子力学演化的并行性,可以展现比传统计算机更快的处理速度。
叠加原理
把量子考虑成磁场中的电子。电子的旋转可能与磁场一致,称为上旋转状态,或者与磁场相反,称为下旋状态。如果我们能在消除外界影响的前提下,用一份能量脉冲能将下自旋态翻转为上自旋态;那么,我们用一半的能量脉冲,将会把下自旋状态制备到一种下自旋与上自旋叠加的状态上(处在每种状态上的几率为二分之一)。对于n个量子比特而言,它可以承载2的n次方个状态的叠加状态。而量子计算机的操作过程被称为幺正演化,幺正演化将保证每种可能的状态都以并行的方式演化。这意味着量子计算机如果有500个量子比特,则量子计算的每一步会对2^500种可能性同时做出了操作。2^500是一个可怕的数,它比地球上已知的原子数还要多(这是真正的并行处理,当今的经典计算机,所谓的并行处理器仍然是一次只做一件事情)。
几 个 问 题
1.量子计算机不会取代经典计算机
2.量子计算机擅长解决优化问题
3.量子计算机将扩展经典计算机
4.我们需要50到60个量子比特的计算机来做有用的工作
5.构建可工作量子计算机并非易事
6.我们不知道如何编写有用的量子软件
7.量子计算机需要纠错
解 决 问 题
计算机发展的瓶颈主要有两个。首先,随着晶体管体积不断缩小,计算机可容纳的元器件数量越来越多,产生的热量也随之增多。其次,随着元器件体积变小,电子会穿过元器件,发生量子隧穿效应,这导致了经典计算机的比特开始变得不稳定。
量子计算机的出现,巧妙地解决了计算机发展的瓶颈问题。丁洪说,从原理来看,量子计算机是可逆计算机,不会丢失信息。经典计算机则是不可逆计算机,不可逆计算过程中每个比特的操作都会有热损耗
和量子通信的区别
量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。
量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。量子计算机应用的是量子比特,可以同时处在多个状态,而不像传统计算机那样只能处于0或1的二进制状态
主 要 特 点
1,量子计算机的特点主要有运行速度较快、而普通计算机速度慢。
2,量子计算机处置信息能力较强、应用范围较广。一般计算机比较起来就慢一些。
3,量子计算机信息处理量愈多,对于量子计算机实施运算也就愈加有利,也就更能确保运算具备精准性,但是普通计算机处理量越多就负载越大,就会变慢。
量子计算机,简单地说,它是一种可以实现量子计算的机器,是一种通过量子力学规律以实现数学和逻辑运算,处理和储存信息能力的系统。
它以量子态为记忆单元和信息储存形式,以量子动力学演化为信息传递与加工基础的量子通讯与量子计算,在量子计算机中其硬件的各种元件的尺寸达到原子或分子的量级。量子计算机是一个物理系统,它能存储和处理关于量子力学变量的信息。而普通计算机传统计算机是通过集成电路中电路的通断来实现0、1之间的区分。
如同传统计算机是通过集成电路中电路的通断来实现0、1之间的区分,其基本单元为硅晶片一样,量子计算机也有着自己的基本单位——昆比特。昆比特又称量子比特,它通过量子的两态的量子力学体系来表示0或1。
相 关 配 图