作者:高开远
学校:上海交通大学
研究方向:自然语言处理
BERT模型也出来很久了, 之前有看过论文和一些博客对其做了解读:NLP大杀器BERT模型解读,但是一直没有细致地去看源码具体实现。最近有用到就抽时间来仔细看看记录下来,和大家一起讨论。
注意,源码阅读系列需要提前对NLP相关知识有所了解,比如attention机制、transformer框架以及python和tensorflow基础等,关于BERT的原理不是本文的重点。
附上关于BERT的资料汇总:BERT相关论文、文章和代码资源汇总
今天要介绍的是BERT最主要的模型实现部分-----BertModel,代码位于
√modeling.py模块
如有解读不正确,请务必指出~
这部分代码主要定义了BERT模型的一些默认参数,另外包括了一些文件处理函数。
1 class BertConfig(object):
2 """BERT模型的配置类."""
3
4 def __init__(self,
5 vocab_size,
6 hidden_size=768,
7 num_hidden_layers=12,
8 num_attention_heads=12,
9 intermediate_size=3072,
10 hidden_act="gelu",
11 hidden_dropout_prob=0.1,
12 attention_probs_dropout_prob=0.1,
13 max_position_embeddings=512,
14 type_vocab_size=16,
15 initializer_range=0.02):
16
17 self.vocab_size = vocab_size
18 self.hidden_size = hidden_size
19 self.num_hidden_layers = num_hidden_layers
20 self.num_attention_heads = num_attention_heads
21 self.hidden_act = hidden_act
22 self.intermediate_size = intermediate_size
23 self.hidden_dropout_prob = hidden_dropout_prob
24 self.attention_probs_dropout_prob = attention_probs_dropout_prob
25 self.max_position_embeddings = max_position_embeddings
26 self.type_vocab_size = type_vocab_size
27 self.initializer_range = initializer_range
28
29 @classmethod
30 def from_dict(cls, json_object):
31 """Constructs a `BertConfig` from a Python dictionary of parameters."""
32 config = BertConfig(vocab_size=None)
33 for (key, value) in six.iteritems(json_object):
34 config.__dict__[key] = value
35 return config
36
37 @classmethod
38 def from_json_file(cls, json_file):
39 """Constructs a `BertConfig` from a json file of parameters."""
40 with tf.gfile.GFile(json_file, "r") as reader:
41 text = reader.read()
42 return cls.from_dict(json.loads(text))
43
44 def to_dict(self):
45 """Serializes this instance to a Python dictionary."""
46 output = copy.deepcopy(self.__dict__)
47 return output
48
49 def to_json_string(self):
50 """Serializes this instance to a JSON string."""
51 return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
参数具体含义
vocab_size:词表大小 hidden_size:隐藏层神经元数 num_hidden_layers:Transformer encoder中的隐藏层数 num_attention_heads:multi-head attention 的head数 intermediate_size:encoder的“中间”隐层神经元数(例如feed-forward layer) hidden_act:隐藏层激活函数 hidden_dropout_prob:隐层dropout率 attention_probs_dropout_prob:注意力部分的dropout max_position_embeddings:最大位置编码 type_vocab_size:token_type_ids的词典大小 initializer_range:truncated_normal_initializer初始化方法的stdev
这里要注意一点,可能刚看的时候对type_vocab_size
这个参数会有点不理解,其实就是在next sentence prediction
任务里的Segment A
和 Segment B
。在下载的bert_config.json
文件里也有说明,默认值应该为2。参考这个Issue
对于输入word_ids,返回embedding table。可以选用one-hot或者tf.gather()
1 def embedding_lookup(input_ids, # word_id:【batch_size, seq_length】
2 vocab_size,
3 embedding_size=128,
4 initializer_range=0.02,
5 word_embedding_name="word_embeddings",
6 use_one_hot_embeddings=False):
7
8 # 该函数默认输入的形状为【batch_size, seq_length, input_num】
9 # 如果输入为2D的【batch_size, seq_length】,则扩展到【batch_size, seq_length, 1】
10 if input_ids.shape.ndims == 2:
11 input_ids = tf.expand_dims(input_ids, axis=[-1])
12
13 embedding_table = tf.get_variable(
14 name=word_embedding_name,
15 shape=[vocab_size, embedding_size],
16 initializer=create_initializer(initializer_range))
17
18 flat_input_ids = tf.reshape(input_ids, [-1]) #【batch_size*seq_length*input_num】
19 if use_one_hot_embeddings:
20 one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
21 output = tf.matmul(one_hot_input_ids, embedding_table)
22 else: # 按索引取值
23 output = tf.gather(embedding_table, flat_input_ids)
24
25 input_shape = get_shape_list(input_ids)
26
27 # output:[batch_size, seq_length, num_inputs]
28 # 转成:[batch_size, seq_length, num_inputs*embedding_size]
29 output = tf.reshape(output,
30 input_shape[0:-1] + [input_shape[-1] * embedding_size])
31 return (output, embedding_table)
参数具体含义
input_ids:word id 【batch_size, seq_length】 vocab_size:embedding词表 embedding_size:embedding维度 initializer_range:embedding初始化范围 word_embedding_name:embeddding table命名 use_one_hot_embeddings:是否使用one-hotembedding Return:【batch_size, seq_length, embedding_size】
我们知道BERT模型的输入有三部分:token embedding
,segment embedding
以及position embedding
。上一节中我们只获得了token embedding,这部分代码对其完善信息,正则化,dropout之后输出最终embedding。
注意,在Transformer论文中的position embedding
是由sin/cos函数生成的固定的值,而在这里代码实现中是跟普通word embedding一样随机生成的,可以训练的。作者这里这样选择的原因可能是BERT训练的数据比Transformer那篇大很多,完全可以让模型自己去学习。
1 def embedding_postprocessor(input_tensor, # [batch_size, seq_length, embedding_size]
2 use_token_type=False,
3 token_type_ids=None,
4 token_type_vocab_size=16, # 一般是2
5 token_type_embedding_name="token_type_embeddings",
6 use_position_embeddings=True,
7 position_embedding_name="position_embeddings",
8 initializer_range=0.02,
9 max_position_embeddings=512, #最大位置编码,必须大于等于max_seq_len
10 dropout_prob=0.1):
11
12 input_shape = get_shape_list(input_tensor, expected_rank=3) #【batch_size,seq_length,embedding_size】
13 batch_size = input_shape[0]
14 seq_length = input_shape[1]
15 width = input_shape[2]
16
17 output = input_tensor
18
19 # Segment position信息
20 if use_token_type:
21 if token_type_ids is None:
22 raise ValueError("`token_type_ids` must be specified if"
23 "`use_token_type` is True.")
24 token_type_table = tf.get_variable(
25 name=token_type_embedding_name,
26 shape=[token_type_vocab_size, width],
27 initializer=create_initializer(initializer_range))
28 # 由于token-type-table比较小,所以这里采用one-hot的embedding方式加速
29 flat_token_type_ids = tf.reshape(token_type_ids, [-1])
30 one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
31 token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
32 token_type_embeddings = tf.reshape(token_type_embeddings,
33 [batch_size, seq_length, width])
34 output += token_type_embeddings
35
36 # Position embedding信息
37 if use_position_embeddings:
38 # 确保seq_length小于等于max_position_embeddings
39 assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
40 with tf.control_dependencies([assert_op]):
41 full_position_embeddings = tf.get_variable(
42 name=position_embedding_name,
43 shape=[max_position_embeddings, width],
44 initializer=create_initializer(initializer_range))
45
46 # 这里position embedding是可学习的参数,[max_position_embeddings, width]
47 # 但是通常实际输入序列没有达到max_position_embeddings
48 # 所以为了提高训练速度,使用tf.slice取出句子长度的embedding
49 position_embeddings = tf.slice(full_position_embeddings, [0, 0],
50 [seq_length, -1])
51 num_dims = len(output.shape.as_list())
52
53 # word embedding之后的tensor是[batch_size, seq_length, width]
54 # 因为位置编码是与输入内容无关,它的shape总是[seq_length, width]
55 # 我们无法把位置Embedding加到word embedding上
56 # 因此我们需要扩展位置编码为[1, seq_length, width]
57 # 然后就能通过broadcasting加上去了。
58 position_broadcast_shape = []
59 for _ in range(num_dims - 2):
60 position_broadcast_shape.append(1)
61 position_broadcast_shape.extend([seq_length, width])
62 position_embeddings = tf.reshape(position_embeddings,
63 position_broadcast_shape)
64 output += position_embeddings
65
66 output = layer_norm_and_dropout(output, dropout_prob)
67 return output
该部分代码的作用是构造attention可视域的attention_mask,因为每个样本都经过padding过程,在做self-attention的时候padding的部分不能attend到其他部分上。
输入为形状为【batch_size, from_seq_length,…】的padding好的input_ids和形状为【batch_size, to_seq_length】的mask标记向量。
1 def create_attention_mask_from_input_mask(from_tensor, to_mask):
2 from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
3 batch_size = from_shape[0]
4 from_seq_length = from_shape[1]
5
6 to_shape = get_shape_list(to_mask, expected_rank=2)
7 to_seq_length = to_shape[1]
8
9 to_mask = tf.cast(
10 tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
11
12 broadcast_ones = tf.ones(
13 shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
14
15 mask = broadcast_ones * to_mask
16
17 return mask
这部分代码是multi-head attention的实现,主要来自《Attention is all you need》这篇论文。考虑key-query-value
形式的attention,输入的from_tensor
当做是query, to_tensor
当做是key和value,当两者相同的时候即为self-attention。关于attention更详细的介绍可以转到理解Attention机制原理及模型。
1 def attention_layer(from_tensor, # 【batch_size, from_seq_length, from_width】
2 to_tensor, #【batch_size, to_seq_length, to_width】
3 attention_mask=None, #【batch_size,from_seq_length, to_seq_length】
4 num_attention_heads=1, # attention head numbers
5 size_per_head=512, # 每个head的大小
6 query_act=None, # query变换的激活函数
7 key_act=None, # key变换的激活函数
8 value_act=None, # value变换的激活函数
9 attention_probs_dropout_prob=0.0, # attention层的dropout
10 initializer_range=0.02, # 初始化取值范围
11 do_return_2d_tensor=False, # 是否返回2d张量。
12 #如果True,输出形状【batch_size*from_seq_length,num_attention_heads*size_per_head】
13 #如果False,输出形状【batch_size, from_seq_length, num_attention_heads*size_per_head】
14 batch_size=None, #如果输入是3D的,
15 #那么batch就是第一维,但是可能3D的压缩成了2D的,所以需要告诉函数batch_size
16 from_seq_length=None, # 同上
17 to_seq_length=None): # 同上
18
19 def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
20 seq_length, width):
21 output_tensor = tf.reshape(
22 input_tensor, [batch_size, seq_length, num_attention_heads, width])
23
24 output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) #[batch_size, num_attention_heads, seq_length, width]
25 return output_tensor
26
27 from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
28 to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
29
30 if len(from_shape) != len(to_shape):
31 raise ValueError(
32 "The rank of `from_tensor` must match the rank of `to_tensor`.")
33
34 if len(from_shape) == 3:
35 batch_size = from_shape[0]
36 from_seq_length = from_shape[1]
37 to_seq_length = to_shape[1]
38 elif len(from_shape) == 2:
39 if (batch_size is None or from_seq_length is None or to_seq_length is None):
40 raise ValueError(
41 "When passing in rank 2 tensors to attention_layer, the values "
42 "for `batch_size`, `from_seq_length`, and `to_seq_length` "
43 "must all be specified.")
44
45 # 为了方便备注shape,采用以下简写:
46 # B = batch size (number of sequences)
47 # F = `from_tensor` sequence length
48 # T = `to_tensor` sequence length
49 # N = `num_attention_heads`
50 # H = `size_per_head`
51
52 # 把from_tensor和to_tensor压缩成2D张量
53 from_tensor_2d = reshape_to_matrix(from_tensor) # 【B*F, hidden_size】
54 to_tensor_2d = reshape_to_matrix(to_tensor) # 【B*T, hidden_size】
55
56 # 将from_tensor输入全连接层得到query_layer
57 # `query_layer` = [B*F, N*H]
58 query_layer = tf.layers.dense(
59 from_tensor_2d,
60 num_attention_heads * size_per_head,
61 activation=query_act,
62 name="query",
63 kernel_initializer=create_initializer(initializer_range))
64
65 # 将from_tensor输入全连接层得到query_layer
66 # `key_layer` = [B*T, N*H]
67 key_layer = tf.layers.dense(
68 to_tensor_2d,
69 num_attention_heads * size_per_head,
70 activation=key_act,
71 name="key",
72 kernel_initializer=create_initializer(initializer_range))
73
74 # 同上
75 # `value_layer` = [B*T, N*H]
76 value_layer = tf.layers.dense(
77 to_tensor_2d,
78 num_attention_heads * size_per_head,
79 activation=value_act,
80 name="value",
81 kernel_initializer=create_initializer(initializer_range))
82
83 # query_layer转成多头:[B*F, N*H]==>[B, F, N, H]==>[B, N, F, H]
84 query_layer = transpose_for_scores(query_layer, batch_size,
85 num_attention_heads, from_seq_length,
86 size_per_head)
87
88 # key_layer转成多头:[B*T, N*H] ==> [B, T, N, H] ==> [B, N, T, H]
89 key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
90 to_seq_length, size_per_head)
91
92 # 将query与key做点积,然后做一个scale,公式可以参见原始论文
93 # `attention_scores` = [B, N, F, T]
94 attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
95 attention_scores = tf.multiply(attention_scores,
96 1.0 / math.sqrt(float(size_per_head)))
97
98 if attention_mask is not None:
99 # `attention_mask` = [B, 1, F, T]
100 attention_mask = tf.expand_dims(attention_mask, axis=[1])
101
102 # 如果attention_mask里的元素为1,则通过下面运算有(1-1)*-10000,adder就是0
103 # 如果attention_mask里的元素为0,则通过下面运算有(1-0)*-10000,adder就是-10000
104 adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
105
106 # 我们最终得到的attention_score一般不会很大,
107 #所以上述操作对mask为0的地方得到的score可以认为是负无穷
108 attention_scores += adder
109
110 # 负无穷经过softmax之后为0,就相当于mask为0的位置不计算attention_score
111 # `attention_probs` = [B, N, F, T]
112 attention_probs = tf.nn.softmax(attention_scores)
113
114 # 对attention_probs进行dropout,这虽然有点奇怪,但是Transforme原始论文就是这么做的
115 attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
116
117 # `value_layer` = [B, T, N, H]
118 value_layer = tf.reshape(
119 value_layer,
120 [batch_size, to_seq_length, num_attention_heads, size_per_head])
121
122 # `value_layer` = [B, N, T, H]
123 value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
124
125 # `context_layer` = [B, N, F, H]
126 context_layer = tf.matmul(attention_probs, value_layer)
127
128 # `context_layer` = [B, F, N, H]
129 context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
130
131 if do_return_2d_tensor:
132 # `context_layer` = [B*F, N*H]
133 context_layer = tf.reshape(
134 context_layer,
135 [batch_size * from_seq_length, num_attention_heads * size_per_head])
136 else:
137 # `context_layer` = [B, F, N*H]
138 context_layer = tf.reshape(
139 context_layer,
140 [batch_size, from_seq_length, num_attention_heads * size_per_head])
141
142 return context_layer
总结一下,attention layer的主要流程:
batch_size、from_seq_length 、to_seq_length
transpose_for_scores
转化成multi-head接下来的代码就是大名鼎鼎的Transformer的核心代码了,可以认为是"Attention is All You Need"原始代码重现。可以参见原始论文和原始代码。
1 def transformer_model(input_tensor, # 【batch_size, seq_length, hidden_size】
2 attention_mask=None, # 【batch_size, seq_length, seq_length】
3 hidden_size=768,
4 num_hidden_layers=12,
5 num_attention_heads=12,
6 intermediate_size=3072,
7 intermediate_act_fn=gelu, # feed-forward层的激活函数
8 hidden_dropout_prob=0.1,
9 attention_probs_dropout_prob=0.1,
10 initializer_range=0.02,
11 do_return_all_layers=False):
12
13 # 这里注意,因为最终要输出hidden_size, 我们有num_attention_head个区域,
14 # 每个head区域有size_per_head多的隐层
15 # 所以有 hidden_size = num_attention_head * size_per_head
16 if hidden_size % num_attention_heads != 0:
17 raise ValueError(
18 "The hidden size (%d) is not a multiple of the number of attention "
19 "heads (%d)" % (hidden_size, num_attention_heads))
20
21 attention_head_size = int(hidden_size / num_attention_heads)
22 input_shape = get_shape_list(input_tensor, expected_rank=3)
23 batch_size = input_shape[0]
24 seq_length = input_shape[1]
25 input_width = input_shape[2]
26
27 # 因为encoder中有残差操作,所以需要shape相同
28 if input_width != hidden_size:
29 raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
30 (input_width, hidden_size))
31
32 # reshape操作在CPU/GPU上很快,但是在TPU上很不友好
33 # 所以为了避免2D和3D之间的频繁reshape,我们把所有的3D张量用2D矩阵表示
34 prev_output = reshape_to_matrix(input_tensor)
35
36 all_layer_outputs = []
37 for layer_idx in range(num_hidden_layers):
38 with tf.variable_scope("layer_%d" % layer_idx):
39 layer_input = prev_output
40
41 with tf.variable_scope("attention"):
42 # multi-head attention
43 attention_heads = []
44 with tf.variable_scope("self"):
45 # self-attention
46 attention_head = attention_layer(
47 from_tensor=layer_input,
48 to_tensor=layer_input,
49 attention_mask=attention_mask,
50 num_attention_heads=num_attention_heads,
51 size_per_head=attention_head_size,
52 attention_probs_dropout_prob=attention_probs_dropout_prob,
53 initializer_range=initializer_range,
54 do_return_2d_tensor=True,
55 batch_size=batch_size,
56 from_seq_length=seq_length,
57 to_seq_length=seq_length)
58 attention_heads.append(attention_head)
59
60 attention_output = None
61 if len(attention_heads) == 1:
62 attention_output = attention_heads[0]
63 else:
64 # 如果有多个head,将他们拼接起来
65 attention_output = tf.concat(attention_heads, axis=-1)
66
67 # 对attention的输出进行线性映射, 目的是将shape变成与input一致
68 # 然后dropout+residual+norm
69 with tf.variable_scope("output"):
70 attention_output = tf.layers.dense(
71 attention_output,
72 hidden_size,
73 kernel_initializer=create_initializer(initializer_range))
74 attention_output = dropout(attention_output, hidden_dropout_prob)
75 attention_output = layer_norm(attention_output + layer_input)
76
77 # feed-forward
78 with tf.variable_scope("intermediate"):
79 intermediate_output = tf.layers.dense(
80 attention_output,
81 intermediate_size,
82 activation=intermediate_act_fn,
83 kernel_initializer=create_initializer(initializer_range))
84
85 # 对feed-forward层的输出使用线性变换变回‘hidden_size’
86 # 然后dropout + residual + norm
87 with tf.variable_scope("output"):
88 layer_output = tf.layers.dense(
89 intermediate_output,
90 hidden_size,
91 kernel_initializer=create_initializer(initializer_range))
92 layer_output = dropout(layer_output, hidden_dropout_prob)
93 layer_output = layer_norm(layer_output + attention_output)
94 prev_output = layer_output
95 all_layer_outputs.append(layer_output)
96
97 if do_return_all_layers:
98 final_outputs = []
99 for layer_output in all_layer_outputs:
100 final_output = reshape_from_matrix(layer_output, input_shape)
101 final_outputs.append(final_output)
102 return final_outputs
103 else:
104 final_output = reshape_from_matrix(prev_output, input_shape)
105 return final_output
配上下图一同使用效果更佳,因为BERT里只有encoder,所有decoder没有姓名
BertModel类的构造函数,有了上面几节的铺垫,我们就可以来实现BERT模型了。
1 def __init__(self,
2 config, # BertConfig对象
3 is_training,
4 input_ids, # 【batch_size, seq_length】
5 input_mask=None, # 【batch_size, seq_length】
6 token_type_ids=None, # 【batch_size, seq_length】
7 use_one_hot_embeddings=False, # 是否使用one-hot;否则tf.gather()
8 scope=None):
9
10 config = copy.deepcopy(config)
11 if not is_training:
12 config.hidden_dropout_prob = 0.0
13 config.attention_probs_dropout_prob = 0.0
14
15 input_shape = get_shape_list(input_ids, expected_rank=2)
16 batch_size = input_shape[0]
17 seq_length = input_shape[1]
18 # 不做mask,即所有元素为1
19 if input_mask is None:
20 input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
21
22 if token_type_ids is None:
23 token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
24
25 with tf.variable_scope(scope, default_name="bert"):
26 with tf.variable_scope("embeddings"):
27 # word embedding
28 (self.embedding_output, self.embedding_table) = embedding_lookup(
29 input_ids=input_ids,
30 vocab_size=config.vocab_size,
31 embedding_size=config.hidden_size,
32 initializer_range=config.initializer_range,
33 word_embedding_name="word_embeddings",
34 use_one_hot_embeddings=use_one_hot_embeddings)
35
36 # 添加position embedding和segment embedding
37 # layer norm + dropout
38 self.embedding_output = embedding_postprocessor(
39 input_tensor=self.embedding_output,
40 use_token_type=True,
41 token_type_ids=token_type_ids,
42 token_type_vocab_size=config.type_vocab_size,
43 token_type_embedding_name="token_type_embeddings",
44 use_position_embeddings=True,
45 position_embedding_name="position_embeddings",
46 initializer_range=config.initializer_range,
47 max_position_embeddings=config.max_position_embeddings,
48 dropout_prob=config.hidden_dropout_prob)
49
50 with tf.variable_scope("encoder"):
51
52 # input_ids是经过padding的word_ids: [25, 120, 34, 0, 0]
53 # input_mask是有效词标记: [1, 1, 1, 0, 0]
54 attention_mask = create_attention_mask_from_input_mask(
55 input_ids, input_mask)
56
57 # transformer模块叠加
58 # `sequence_output` shape = [batch_size, seq_length, hidden_size].
59 self.all_encoder_layers = transformer_model(
60 input_tensor=self.embedding_output,
61 attention_mask=attention_mask,
62 hidden_size=config.hidden_size,
63 num_hidden_layers=config.num_hidden_layers,
64 num_attention_heads=config.num_attention_heads,
65 intermediate_size=config.intermediate_size,
66 intermediate_act_fn=get_activation(config.hidden_act),
67 hidden_dropout_prob=config.hidden_dropout_prob,
68 attention_probs_dropout_prob=config.attention_probs_dropout_prob,
69 initializer_range=config.initializer_range,
70 do_return_all_layers=True)
71
72 # `self.sequence_output`是最后一层的输出,shape为【batch_size, seq_length, hidden_size】
73 self.sequence_output = self.all_encoder_layers[-1]
74
75 # ‘pooler’部分将encoder输出【batch_size, seq_length, hidden_size】
76 # 转成【batch_size, hidden_size】
77 with tf.variable_scope("pooler"):
78 # 取最后一层的第一个时刻[CLS]对应的tensor, 对于分类任务很重要
79 # sequence_output[:, 0:1, :]得到的是[batch_size, 1, hidden_size]
80 # 我们需要用squeeze把第二维去掉
81 first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
82 # 然后再加一个全连接层,输出仍然是[batch_size, hidden_size]
83 self.pooled_output = tf.layers.dense(
84 first_token_tensor,
85 config.hidden_size,
86 activation=tf.tanh,
87 kernel_initializer=create_initializer(config.initializer_range))
有了以上对源码的深入了解之后,我们在使用BertModel的时候就会更加得心应手。举个模型使用的简单栗子:
1 # 假设输入已经经过分词变成word_ids. shape=[2, 3]
2 input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
3 input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
4 # segment_emebdding. 表示第一个样本前两个词属于句子1,后一个词属于句子2.
5 # 第二个样本的第一个词属于句子1, 第二次词属于句子2,第三个元素0表示padding
6 token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])
7
8 # 创建BertConfig实例
9 config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
10 num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
11
12 # 创建BertModel实例
13 model = modeling.BertModel(config=config, is_training=True,
14 input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
15
16
17 label_embeddings = tf.get_variable(...)
18 #得到最后一层的第一个Token也就是[CLS]向量表示,可以看成是一个句子的embedding
19 pooled_output = model.get_pooled_output()
20 logits = tf.matmul(pooled_output, label_embeddings)
在BERT模型构建这一块的主要流程:
原文链接:
https://blog.csdn.net/Kaiyuan_sjtu/article/details/90265473
本文由作者原创授权AINLP首发于公众号平台,点击'阅读原文'直达原文链接,欢迎投稿,AI、NLP均可。