连续内存是一种比较直观的做法。这种做法将内存分为两个区域,一个是用户进程区域,另一个是操作系统区域。操作系统一般放在内存的低地址区域,这时因为中断向量被设置在低地址,例如0x80中断。为了提高响应速度,内存之中需要驻留多个进程来实现这一性能改进。现在就需要考虑内存分配。
在内存分配之前,我们需要知道内存保护的问题。首先,用户进程之间彼此不能影响,用户进程也不能影响操作系统。可以使用重定位寄存器设置一个最小的物理地址。界限寄存器含有逻辑地址。有了这些,每个地址就必须小鱼界限寄存器。MMU将逻辑地址加上重定位寄存器地址的值,形成一个物理地址。当调度发生的时候,派遣程序会用正确的值来初始化重定位寄存器和界限寄存器。重定位寄存器也为操作系统提供大小的动态改变。
连续内存分配是最简单的一种方法,它主要用于批处理系统。给内存分为固定大小的块。每个块只能容纳一个进程。这样一个个大小不同的内存分块就形成了,当新进程需要内存的时候,系统会为它找一块足够大的孔。如果孔很大,那么剩余的部分还会作为一个孔,当进程退出的时候,它将释放内存。如果新的孔和旧的孔在一起,那么可以合并它们。但是新进程需要内存的时候,将哪个合适的孔分配给它?这是一个问题,到底是大一些的孔好,还是小一些的孔好。这个问题的解决方法有很多,但是各有利弊。模拟结果显示首次适应和最好适配在表现上优于最差适配。但是首次适配更加简单。
以上这些算法都有一个共同的问题,那就是都会产生外部碎片。不连续的小孔最终就会无法容纳一个进程,导致产生碎片化的内存。还有一种碎片是内部碎片,一般系统分配的内存是2的次方,而不是你需要多大分配的就刚好是这么大。例如:你需要2Kb,它会给你4Kb;你需要3Kb,它还是给你4Kb。这样就造成了内部碎片的产生。
一种解决外部碎片的方法是移动内存中的内容,使得所有的空闲空间合并成为一整块。这适合于运行时绑定地址的进程,并且这个操作带来的开销是巨大的,不能经常使用。
另外的解决办法就是允许物理内存为非连续分配。这样只要有物理内存就可以为进程分配。主要有两种实现方案分页和分段。它们还可以合并使用。