前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >水平分库如何做到平滑扩展

水平分库如何做到平滑扩展

作者头像
猿天地
发布2019-06-19 20:21:48
8230
发布2019-06-19 20:21:48
举报
文章被收录于专栏:猿天地

上一篇关于DynamoDB的介绍中,有一个特别亮点,就是它无需停机就可以动态扩容。

这个对于我们常用的分库分表方案来说,有很大的优势,分库分表的扩容是一件头疼的问题,如果采用对db层做一致性hash,或是中间价的支持,它的成本过于高昂了,如果不如此,只能停机维护来处理,对高可用性会产生影响。 那是否有方案,既可以快速扩展,又不降低可用性?这一篇,我们聊聊分库分表的扩展方案,供大家一起探讨。

一、水平分库扩展问题

为了增加db的并发能力,常见的方案就是对数据进行sharding,也就是常说的分库分表,这个需要在初期对数据规划有一个预期,从而预先分配出足够的库来处理。

比如目前规划了3个数据库,基于uid进行取余分片,那么每个库上的划分规则如下:

如上我们可以看到,数据可以均衡的分配到3个数据库里面。

但是,如果后续业务发展的速度很快,用户量数据大量上升,当前容量不足以支撑,应该怎么办?

需要对数据库进行水平扩容,再增加新库来分解。新库加入之后,原先sharding到3个库的数据,就可以sharding到四个库里面了

不过此时由于分片规则进行了变化(uid%3 变为uid%4),大部分的数据,无法命中在原有的数据库上了,需要重新分配,大量数据需要迁移。

比如之前uid1通过uid1%3 分配在A库上,新加入库D之后,算法改为uid1%4 了,此时有可能就分配在B库上面了。 如果你有看到之前《一致性哈希的原理与实践》,就会发现新增一个节点,大概会有90%的数据需要迁移,这个对DB同学的压力还是蛮大的,那么如何应对?

一般有以下几种方式。

二、停服迁移

停服迁移是最常见的一种方案了,一般如下流程:

  1. 预估停服时间,发布停服公告
  2. 停服,通过事先做好的数据迁移工具,按照新的分片规则,进行迁移
  3. 修改分片规则
  4. 启动服务

我们看到这种方式比较安全,停服之后没有数据写入,能够保证迁移工作的正常进行,没有一致性的问题。唯一的问题,就是停服了和时间压力了。

  1. 停服,伤害用户体验,同时也降低了服务器的可用性
  2. 必须在制定时间内完成迁移,如果失败,需要择日再次进行。同时增加了开发人员的压力,容易发生大的事故
  3. 数据量的巨大的时候,迁移需要大量时间

那有没有其他方式来改进一下,我们看下以下两种方案。

三、升级从库

线上数据库,我们为了保持其高可用,一般都会每台主库配一台从库,读写在主库,然后主从同步到从库。如下,A,B是主库,A0和B0是从库。

此时,当需要扩容的时候,我们把A0和B0升级为新的主库节点,如此由2个分库变为4个分库。同时在上层的分片配置,做好映射,规则如下:

uid%4=0和uid%4=2的分别指向A和A0,也就是之前指向uid%2=0的数据,分裂为uid%4=0和uid%4=2 uid%4=1和uid%4=3的指向B和B0,也就是之前指向uid%2=1的数据,分裂为uid%4=1和uid%4=3

因为A和A0库的数据相同,B和B0数据相同,所以此时无需做数据迁移即可。只需要变更一下分片配置即可,通过配置中心更新,无需重启。

由于之前uid%2的数据分配在2个库里面,此时分散到4个库中,由于老数据还存在(uid%4=0,还有一半uid%4=2的数据),所以需要对冗余数据做一次清理。

而这个清理,不会影响线上数据的一致性,可是随时随地进行。

处理完成以后,为保证高可用,以及下一步扩容需求。可以为现有的主库再次分配一个从库。

总结一下此方案步骤如下:

  1. 修改分片配置,做好新库和老库的映射。
  2. 同步配置,从库升级为主库
  3. 解除主从关系
  4. 冗余数据清理
  5. 为新的数据节点搭建新的从库

四、双写迁移

双写的方案,更多的是针对线上数据库迁移来用的,当然了,对于分库的扩展来说也是要迁移数据的,因此,也可以来协助分库扩容的问题。

原理和上述相同,做分裂扩容,只是数据的同步方式不同了。

1.增加新库写链接

双写的核心原理,就是对需要扩容的数据库上,增加新库,并对现有的分片上增加写链接,同时写两份数据。

因为新库的数据为空,所以数据的CRUD对其没有影响,在上层的逻辑层,还是以老库的数据为主。

2.新老库数据迁移

通过工具,把老库的数据迁移到新库里面,此时可以选择同步分裂后的数据(1/2)来同步,也可以全同步,一般建议全同步,最终做数据校检的时候好处理。

3.数据校检

按照理想环境情况下,数据迁移之后,因为是双写操作,所以两边的数据是一致的,特别是insert和update,一致性情况很高。但真实环境中会有网络延迟等情况,对于delete情况并不是很理想,比如:

A库删除数据a的时候,数据a正在迁移,还没有写入到C库中,此时C库的删除操作已经执行了,C库会多出一条数据。

此时就需要做好数据校检了,数据校检可以多做几遍,直到数据几乎一致,尽量以旧库的数据为准。

4.分片配置修改

数据同步完毕,就可以把新库的分片映射重新处理了,还是按照老库分裂的方式来进行,

u之前uid%2=0,变为uid%4=0和uid%4=2的 uid%2=1,变为uid%4=1和uid%4=3的。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-04-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 猿天地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、水平分库扩展问题
  • 二、停服迁移
  • 三、升级从库
  • 四、双写迁移
    • 1.增加新库写链接
      • 2.新老库数据迁移
        • 3.数据校检
          • 4.分片配置修改
          相关产品与服务
          数据库
          云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档