tf.train.batch(
tensors,
batch_size,
num_threads=1,
capacity=32,
enqueue_many=False,
shapes=None,
dynamic_pad=False,
allow_smaller_final_batch=False,
shared_name=None,
name=None
)
在张量中创建多个张量。参数张量可以是张量的列表或字典。函数返回的值与张量的类型相同。这个函数是使用队列实现的。队列的QueueRunner被添加到当前图的QUEUE_RUNNER集合中。 如果enqueue_many为False,则假定张量表示单个示例。一个形状为[x, y, z]的输入张量将作为一个形状为[batch_size, x, y, z]的张量输出。如果enqueue_many为真,则假定张量表示一批实例,其中第一个维度由实例索引,并且张量的所有成员在第一个维度中的大小应该相同。如果一个输入张量是shape [*, x, y, z],那么输出就是shape [batch_size, x, y, z]。容量参数控制允许预取多长时间来增长队列。返回的操作是一个dequeue操作,将抛出tf.errors。如果输入队列已耗尽,则OutOfRangeError。如果该操作正在提供另一个输入队列,则其队列运行器将捕获此异常,但是,如果在主线程中使用该操作,则由您自己负责捕获此异常。
注意: 如果dynamic_pad为False,则必须确保(i)传递了shapes参数,或者(ii)张量中的所有张量必须具有完全定义的形状。如果这两个条件都不成立,将会引发ValueError。如果dynamic_pad为真,则只要知道张量的秩就足够了,但是单个维度可能没有形状。在这种情况下,对于每个加入值为None的维度,其长度可以是可变的;在退出队列时,输出张量将填充到当前minibatch中张量的最大形状。对于数字,这个填充值为0。对于字符串,这个填充是空字符串。如果allow_smaller_final_batch为真,那么当队列关闭且没有足够的元素来填充该批处理时,将返回比batch_size更小的批处理值,否则将丢弃挂起的元素。此外,通过shape属性访问的所有输出张量的静态形状的第一个维度值为None,依赖于固定batch_size的操作将失败。
参数:
返回值:
异常值:
ValueError
: If the shapes
are not specified, and cannot be inferred from the elements of tensors
.Eager Compatibility
启用即时执行时,不支持基于队列的输入管道。请使用tf。数据API,用于在紧急执行下摄取数据。