前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OpenCV视频分析背景提取与前景提取

OpenCV视频分析背景提取与前景提取

作者头像
OpenCV学堂
发布2019-05-22 16:45:33
5K0
发布2019-05-22 16:45:33
举报
文章被收录于专栏:贾志刚-OpenCV学堂

阅读本文,用时3~5mins

基本思想

OpenCV中支持的两种背景提取算法都是基于模型密度评估,然后在像素级对图像进行前景与背景分类的方法,它们具有相同的假设前提 – 各个像素之间是没有相关性的,跟它们算法思想不同的方法主要是基于马尔可夫随机场理论,认为每个像素跟周围的像素是有相关性关系,但是基于马尔可夫随机场的方法速度与执行效率都堪忧!所以OpenCV中没有实现。

基于像素分类的背景分析方法

  • 自适应的背景提取(无参数化/ KNN)
  • 基于GMM的背景提取
  • 基于模糊积分的背景提取

这些背景建模的方法一般都可以分为如下三步完成

  • 背景初始化阶段(背景建模提取)
  • 前景检测阶段(视频分析,前景对象检测)
  • 背景维护与更新(视频分析过程中)

视频分析中,工作方式如下:

算法介绍

实现对前景与背景像素级别的建模,最常见的是RGB像素的概率密度分布,当对象没有变化的时候,通过连续的N帧进行建模生成背景模型

高斯混合模型(GMM)方式正好满足这种方式,对高斯混合模型中的每个componet进行建模,计算表达如下:

基于GMM的核密度估算需要考虑初始输入componet数目参数、OpenCV中实现的另外一种方法是基于简单的核密度估算方法,然后通过KNN对输出的每个像素进行前景与背景分类,实现了更加快速的背景分析。非参数话的模型更新

上述两种方法都是基于像素分类,采用非此即彼的方法,没有考虑到像素之间相似度的关联性,在实际应用场景中有些情况会带来问题。所以还有一种相似度进行模糊积分决策方法,它的算法流程如下:

其中颜色相似性度量如下:

代码与演示

OpenCV在release模块中相关API

代码语言:javascript
复制
Ptr<BackgroundSubtractorMOG2> cv::createBackgroundSubtractorMOG2(
 int history = 500,
 double varThreshold = 16,
 bool detectShadows = true 
)
参数解释
History表示的是历史帧数多少,这个跟作者论文提到的采样有关计算模型建立有关系
varThreshold表示马氏距离的阈值
detectShadows是否检测阴影

演示代码

代码语言:javascript
复制
import cv2 as cv

capture = cv.VideoCapture("D:/images/video/video_004.avi")
mog = cv.createBackgroundSubtractorMOG2()
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
while True:
    ret, image = capture.read()
    if ret is True:
        fgmask = mog.apply(image)
        ret, binary = cv.threshold(fgmask, 220, 255, cv.THRESH_BINARY)
        binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
        bgimage = mog.getBackgroundImage()
        cv.imshow("bgimage", bgimage)
        cv.imshow("frame", image)
        cv.imshow("fgmask", binary)
        c = cv.waitKey(50)
        if c == 27:
            break
    else:
        break

cv.destroyAllWindows()

运行结果

画面解释:最左侧是输入视频的一帧,有一只小兔子在跑,中间是背景建模,右侧是前景检测,生成的移动对象mask,可见小兔子作为移动目标被成功捕获!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-05-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 OpenCV学堂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档