首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python数据清洗--缺失值识别与处理

Python数据清洗--缺失值识别与处理

作者头像
1480
发布于 2019-05-21 15:19:40
发布于 2019-05-21 15:19:40
2.6K00
代码可运行
举报
文章被收录于专栏:数据分析1480数据分析1480
运行总次数:0
代码可运行

还没关注?

快动动手指!

前言

在《Python数据清洗--类型转换和冗余数据删除》中分享了有关数据类型转换和冗余信息删除的两个知识点,接下来继续讲解缺失值的识别和处理办法。缺失值指的是由于人为或机器等原因导致数据记录的丢失或隐瞒,缺失值的存在一定程度上会影响后续数据分析和挖掘的结果,所以对他的处理将显得尤为重要。

缺失值的识别

判断一个数据集是否存在缺失观测,通常从两个方面入手,一个是变量的角度,即判断每个变量中是否包含缺失值;另一个是数据行的角度,即判断每行数据中是否包含缺失值。关于缺失值的判断可以使用isnull方法。下面使用isnull方法对data3数据(数据可至中---下载)进行判断,统计输出的结果如下表所示。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 判断各变量中是否存在缺失值
data3.isnull().any(axis = 0)

# 各变量中缺失值的数量
data3.isnull().sum(axis = 0)

# 各变量中缺失值的比例
data3.isnull().sum(axis = 0)/data3.shape[0]

如上结果所示,数据集data3中有三个变量存在缺失值,即gender、age和edu,它们的缺失数量分别为136、100和1,927,缺失比例分别为4.53%、3.33%和64.23%。

需要说明的是,判断数据是否为缺失值NaN,可以使用isnull“方法”,它会返回与原数据行列数相同的矩阵,并且矩阵的元素为bool类型的值,为了得到每一列的判断结果,仍然需要any“方法”(且设置“方法”内的axis参数为0);统计各变量的缺失值个数可以在isnull的基础上使用sum“方法”(同样需要设置axis参数为0);计算缺失比例就是在缺失数量的基础上除以总的样本量(shape方法返回数据集的行数和列数,[0]表示取出对应的数据行数)。

读者可能对代码中的“axis=0”感到困惑,它代表了什么?为什么是0?是否还可以写其他值?下面通过图表的形式来说明axis参数的用法:

假设上图为学生的考试成绩表,如果直接对成绩表中的分数进行加和操作,得到的是所有学生的分数总和(很显然没有什么意义),如果按学生分别计算总分,将是上图从左到右的转换。该转换的特征是列数发生了变化(可以是列数减少,也可以是列数增多),类似于在水平方向上受了外部的压力或拉力,这样的外力就理解为轴axis为1的效果(便于理解,可以想象为飞机在有动力的情况下,可以保持水平飞行状态)。

同样对于如上的学生成绩表,如果直接对成绩表中的分数计算平均值,得到的是所有学生的平均分数(很显然也没有什么意义),如果按学科分别计算平均分,将是上图中从上到下的转换。该转换的特征是行数发生了变化(可以是行数减少,也可以是行数增多),类似于在垂直方向上受了外部的挤压或拉伸,这样的外力就理解为轴axis为0的效果(便于理解,可以想象为飞机在没有动力的情况下,呈下降趋势)。

如上是关于变量方面的缺失值判断过程,还可以利用下方的代码识别数据行的缺失值分布情况:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 判断数据行中是否存在缺失值
data3.isnull().any(axis = 1).any()out:
True

如上结果所示,返回True值,说明data3中的数据行存在缺失值。代码中使用了两次any“方法”,第一次用于判断每一行对应的True(即行内有缺失值)或False值(即行内没有缺失值);第二次则用于综合判断所有数据行中是否包含缺失值。同理,进一步还可以判断缺失行的具体数量和占比,代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 缺失观测的行数
data3.isnull().any(axis = 1).sum()

# 缺失观测的比例
data3.isnull().any(axis = 1).sum()/data3.shape[0]

如上结果所示,3000行的数据集中有2024行存在缺失值,缺失行的比例约67.47%。不管是变量角度的缺失值判断,还是数据行角度的缺失值判断,一旦发现缺失值,都需要对其作相应的处理,否则一定程度上都会影响数据分析或挖掘的准确性。

缺失值的处理办法

通常对于缺失值的处理,最常用的方法无外乎删除法、替换法和插补法。删除法是指将缺失值所在的观测行删除(前提是缺失行的比例非常低,如5%以内),或者删除缺失值所对应的变量(前提是该变量中包含的缺失值比例非常高,如70%左右);替换法是指直接利用缺失变量的均值、中位数或众数替换该变量中的缺失值,其好处是缺失值的处理速度快,弊端是易产生有偏估计,导致缺失值替换的准确性下降;插补法则是利用有监督的机器学习方法(如回归模型、树模型、网络模型等)对缺失值作预测,其优势在于预测的准确性高,缺点是需要大量的计算,导致缺失值的处理速度大打折扣。下面将选择删除法、替换法和插补法对缺失值进行处理,代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 删除字段 -- 如删除缺失率非常高的edu变量
data3.drop(labels = 'edu', axis = 1, inplace=True)
# 数据预览
data3.head()

如上结果所示,表中的edu变量已被成功删除。对于字段的删除可以选择drop“方法”,其中labels参数用于指定需要删除的变量名称,如果是多个变量,则需要将这些变量名称写在一对中括号内(如['var1','var2','var3']);删除变量一定要设置axis参数为1,因为变量个数发生了变化(所以,借助于axis参数也可以删除观测行啦);inplace则表示是否原地修改,即是否直接将原表中的字段进行删除,这里设置为True,如果设置为False,则将删除变量的预览效果输出来,而非真正改变原始数据。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 删除观测,-- 如删除age变量中所对应的缺失观测
data3_new = data3.drop(labels = data3.index[data3['age'].isnull()], axis = 0)
# 查看数据的规模
data3_new.shape
out:
(2900, 5)

如上结果所示,利用drop“方法”实现了数据行的删除,但必须将axis参数设置为0,而此时的labels参数则需要指定待删除的行编号。这里的行编号是借助于index“方法”(用于返回原始数据的行编号)和isnull“方法”(用于判断数据是否为缺失状态,如果是缺失则返回True)实现的,其逻辑就是将True对应的行编号取出来,传递给labels参数。

如果变量的缺失比例非常大,或者缺失行的比例非常小时,使用删除法是一个不错的选择,反之,将会丢失大量的数据信息而得不偿失。接下来讲解如何使用替换法处理缺失值,代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 替换法处理缺失值
data3.fillna(value = {'gender': data3['gender'].mode()[0], # 使用性别的众数替换缺失性别
                 'age':data3['age'].mean() # 使用年龄的平均值替换缺失年龄
                 },
          inplace = True # 原地修改数据
          )
# 再次查看各变量的缺失比例
data3.isnull().sum(axis = 0)

如上结果所示,采用替换法后,原始数据中的变量不再含有缺失值。缺失值的填充使用的是fillna“方法”,其中value参数可以通过字典的形式对不同的变量指定不同的值。需要强调的是,如果计算某个变量的众数,一定要使用索引技术,例如代码中的[0],表示取出众数序列中的第一个(我们知道,众数是指出现频次最高的值,假设一个变量中有多个值共享最高频次,那么Python将会把这些值以序列的形式存储起来,故取出指定的众数值,必须使用索引)。

正如前文所说,虽然替换法思想简单、效率高效,但是其替换的值往往不具有很高的准确性,于是出现了插补方法。该方法需要使用机器学习算法,不妨以KNN算法为例(关于该算法的介绍可以查看从零开始学Python【33】--KNN分类回归模型(实战部分)),对Titanic数据集中的Age变量做插补法完成缺失值的处理。代码如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 读取数据
titanic = pd.read_csv('Titanic.csv')
# 删除缺失严重的Cabin变量
titanic.drop(labels='Cabin', axis = 1, inplace=True)
# 根据Embarked变量,删除对应的缺失行
titanic.dropna(subset=['Embarked'], inplace=True)

# 删除无关紧要的变量(这些变量对后面预测年龄没有太多的帮助)
titanic.drop(labels=['PassengerId','Name','Ticket','Embarked'], axis = 1, inplace=True)
# 将字符型的性别变量映射为数值变量
titanic.Sex = titanic.Sex.map({'male':1, 'female':0})

# 将数据拆分为两组,一是年龄缺失组,二是年龄非缺失组,后续基于非缺失值构建KNN模型,再对缺失组做预测
nomissing = titanic.loc[~titanic.Age.isnull(),]
missing = titanic.loc[titanic.Age.isnull(),]

# 导入机器学习的第三方包
from sklearn import neighbors
# 提取出所有的自变量
X = nomissing.columns[nomissing.columns != 'Age']
# 构建模型
knn = neighbors.KNeighborsRegressor()
# 模型拟合
knn.fit(nomissing[X], nomissing.Age)
# 年龄预测
pred_age = knn.predict(missing[X])
结语

本期的内容就介绍到这里,下一期将分享异常值的识别和处理技术,如果你有任何问题,欢迎在公众号的留言区域表达你的疑问。同时,也欢迎各位朋友继续转发与分享文中的内容,让更多的人学习和进步。

每天进步一点点:数据分析1480

长按扫码关注我

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-04-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据分析1480 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【python】数据挖掘分析清洗——缺失值处理方法汇总
本文链接:https://blog.csdn.net/weixin_47058355/article/details/128866686
用户10828570
2023/11/07
5720
Python人工智能:Python决策树分类算法实现示例——基于泰坦尼克号生存者数据集
由于乘客姓名Name、乘票信息Ticket与客舱名称Cabin特征对于乘客的存活影响很小,所以下面首先将其从train_data中剔除:
用户1143655
2023/03/21
1.4K0
Python人工智能:Python决策树分类算法实现示例——基于泰坦尼克号生存者数据集
【缺失值处理】拉格朗日插值法—随机森林算法填充—sklearn填充(均值/众数/中位数)
缺失值的处理准备数据1 sklearn填充(1)使用均值进行填补(连续型特征)(2)使用中位数、0进行填补(连续型特征)(3)使用众数进行填补(离散型特征)(4)KNN填补
用户7886150
2020/12/30
3.2K0
Kaggle知识点:缺失值处理
在进行数据竞赛中,数据预处理阶段经常需要对数据进行缺失值处理。关于缺失值的处理并没有想象中的那么简单。以下为一些经验分享,基本涵盖了大部分处理方式。
Coggle数据科学
2022/05/05
2.2K0
Kaggle知识点:缺失值处理
机器学习基础:缺失值的处理技巧(附Python代码)
在数据分析和建模中,经常会遇到变量值缺失的情况,这是非常常见的。为了保证数据指标的完整性以及可利用性,通常我们会采取特殊的方式对其进行处理。
Python数据科学
2020/08/27
2.5K0
机器学习基础:缺失值的处理技巧(附Python代码)
3000字详解四种常用的缺失值处理方法
不论是自己爬虫获取的还是从公开数据源上获取的数据集,都不能保证数据集是完全准确的,难免会有一些缺失值。而以这样数据集为基础进行建模或者数据分析时,缺失值会对结果产生一定的影响,所以提前处理缺失值是十分必要的。
行哥玩Python
2020/09/17
1.7K0
机器学习实战 | 机器学习特征工程最全解读
教程地址:http://www.showmeai.tech/tutorials/41
ShowMeAI
2022/03/22
2.1K0
机器学习实战 | 机器学习特征工程最全解读
手把手教你如何解决日常工作中的缺失值问题(方法+代码)
再好的模型,如果没有好的数据和特征质量,那训练出来的效果也不会有所提高。数据质量对于数据分析而言是至关重要的,有时候它的意义会在某种程度上会胜过模型算法。
1480
2021/12/06
1.1K0
手把手教你如何解决日常工作中的缺失值问题(方法+代码)
机器学习基础:缺失值的处理技巧(附Python代码)
在数据分析和建模中,经常会遇到变量值缺失的情况,这是非常常见的。为了保证数据指标的完整性以及可利用性,通常我们会采取特殊的方式对其进行处理。
Ai学习的老章
2020/08/28
2.5K0
机器学习基础:缺失值的处理技巧(附Python代码)
Pandas模块,我觉得掌握这些就够用了!
经常会有一些朋友问我类似的问题,“哎呀,这个数据该怎么处理啊,我希望结果是这样的,麻烦刘老师帮我看看。”、“刘老师,怎么把一列数据拆分出来,并取出最后一个拆分结果呀?”、“刘老师,怎么将Json数据读入到Python中呢?”。在我看来,这些问题都可以借助于Pandas模块完成,因为Pandas属于专门做数据预处理的数据科学包。下面来介绍一下我认为Pandas模块中需要掌握的功能和函数。
1480
2019/08/29
5530
Pandas模块,我觉得掌握这些就够用了!
机器学习之逻辑回归
文中的所有数据集链接:https://pan.baidu.com/s/1TV4RQseo6bVd9xKJdmsNFw
润森
2019/09/17
1K0
机器学习之逻辑回归
数据分析入门系列教程-数据清洗
从今天开始,我们再一起来学习数据分析,共同进步! 首先先来进行一个数据清洗的实战,使用比较经典的数据集,泰坦尼克号生存预测数据。
周萝卜
2020/09/27
9410
数据分析入门系列教程-数据清洗
数据清洗之 缺失值处理
缺失值处理 缺失值首先需要根据实际情况定义 可以采取直接删除法 有时候需要使用替换法或者插值法 常用的替换法有均值替换、前向、后向替换和常数替换 import pandas as pd import numpy as np import os os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗之数据预处理' os.chdir('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据') df = pd.read_csv('Mo
ruochen
2021/05/14
9470
数据清洗之 缺失值处理
【sklearn】2.分类决策树实践——Titanic数据集
在上一篇【sklearn】1.分类决策树学习了sklearn决策树的一些接口后,现在利用kaggle上泰坦尼克号的数据集进行实践。
zstar
2022/06/14
1.2K0
【sklearn】2.分类决策树实践——Titanic数据集
【Python基础系列】常见的数据预处理方法(附代码)
本文简单介绍python中一些常见的数据预处理,包括数据加载、缺失值处理、异常值处理、描述性变量转换为数值型、训练集测试集划分、数据规范化。
Ai学习的老章
2020/08/28
19.1K0
数据清洗 Chapter07 | 简单的数据缺失处理方法
使用Scipy库的interpolate模块实现拉格朗日插值 步骤如下: 1、确定非缺失值的索引 2、找出含有缺失值列的其他值 3、调用lagrange函数得出拉格朗日插值多项式的系数 4、输入缺失值所在索引,返回对应的插值
不温卜火
2020/10/28
1.9K0
数据清洗 Chapter07 | 简单的数据缺失处理方法
机器学习中处理缺失值的7种方法
现实世界中的数据往往有很多缺失值。丢失值的原因可能是数据损坏或未能记录数据。在数据集的预处理过程中,丢失数据的处理非常重要,因为许多机器学习算法不支持缺失值。
磐创AI
2020/08/17
8.3K0
机器学习中处理缺失值的7种方法
经典永不过时的句子_网红的成功案例分析
本周给大家分享的数据分析案例是泰坦尼克号幸存者预测的项目,没记错的话,这应该是很多朋友写在简历上的项目经历。如果你目前正在找工作,自身缺少项目经历并且想要充实项目经历的话,可以考虑一下这个项目!
全栈程序员站长
2022/11/01
8480
图解机器学习特征工程
上图为大家熟悉的机器学习建模流程图(扩展阅读:一文全览机器学习建模流程(Python代码)),整个建模流程非常重要的一步,是对于数据的预处理和特征工程,它很大程度决定了最后建模效果的好坏。
算法进阶
2023/09/01
1.4K0
图解机器学习特征工程
Kaggle实战,10 分钟开启机器学习之路
首先当然是 Python。第一次安装 Python 需要从官网上安装。你要安装 3.6 以上的版本,这样才能跟最新版本的库保持同步。
昱良
2019/05/21
7240
推荐阅读
相关推荐
【python】数据挖掘分析清洗——缺失值处理方法汇总
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验