前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >linux1.2.13源码中,管理sock结构体的数据结构及操作函数

linux1.2.13源码中,管理sock结构体的数据结构及操作函数

作者头像
theanarkh
发布2019-03-06 10:04:54
6470
发布2019-03-06 10:04:54
举报
文章被收录于专栏:原创分享

tcp和udp等协议在传输层都对应一个sock结构,该结构是实现协议的重要结构体,而传输层实现的就是对该结构体的管理。利用一个哈希链表根据端口号保存sock结构体。有了保存sock结构的数据结构后,还需要一系列的操作函数。代码如下。

代码语言:javascript
复制
/*
 *    See if a socket number is in use.
 */
// 看socket的端口是否在使用 
static int sk_inuse(struct proto *prot, int num)
{
    struct sock *sk;
    // 根据端口号取得哈希链表中的一个链表
    for(sk = prot->sock_array[num & (SOCK_ARRAY_SIZE -1 )];
        sk != NULL;  sk=sk->next) 
    {
        if (sk->num == num) 
            return(1);
    }
    return(0);
}


/*
 *    Pick a new socket number
 */
// 随机获取一个端口
unsigned short get_new_socknum(struct proto *prot, unsigned short base)
{
    static int start=0;

    /*
     * Used to cycle through the port numbers so the
     * chances of a confused connection drop.
     */

    int i, j;
    int best = 0;
    int size = 32767; /* a big num. */
    struct sock *sk;
    // 大于1024
    if (base == 0) 
        base = PROT_SOCK+1+(start % 1024);
    if (base <= PROT_SOCK) 
    {
        base += PROT_SOCK+(start % 1024);
    }

    /* Now look through the entire array and try to find an empty ptr. */
    for(i=0; i < SOCK_ARRAY_SIZE; i++) 
    {
        j = 0;
        // 找到一条链表
        sk = prot->sock_array[(i+base+1) &(SOCK_ARRAY_SIZE -1)];
        // 找到链表中的最后一个节点
        while(sk != NULL) 
        {
            sk = sk->next;
            j++;
        }
        // 该链表上还没有节点,说明这个端口还没有被使用过,返回该端口号,更新start变量
        if (j == 0) 
        {
            start =(i+1+start )%1024;
            return(i+base+1);
        }
        /*
            j为本次循环的队列的节点数,best记录新端口所属队列的索引,
            size为本次循环为止节点数最少的队列的节点数,为了避免单个队列过长,
            找可用端口的时候,不仅要找到一个可用的端口,而且尽量保证端口所对
            应的队列不会过长,避免查找的时候比较慢,所以for循环是为了找出哈希链表
            中节点数最少的队列对应的索引。然后往该队列插入一个新的端口节点
        */
        if (j < size) 
        {
            best = i;
            size = j;
        }
    }

    /* Now make sure the one we want is not in use. */
    // 在一条队列中找到一个未使用的端口号,SOCK_ARRAY_SIZE保证哈希后对应的是同一个队列
    while(sk_inuse(prot, base +best+1)) 
    {
        best += SOCK_ARRAY_SIZE;
    }
    return(best+base+1);
}

/*
 *    Add a socket into the socket tables by number.
 */

void put_sock(unsigned short num, struct sock *sk)
{
    struct sock *sk1;
    struct sock *sk2;
    int mask;
    unsigned long flags;

    sk->num = num;
    sk->next = NULL;
    num = num &(SOCK_ARRAY_SIZE -1);

    /* We can't have an interrupt re-enter here. */
    save_flags(flags);
    cli();
    // 使用的socket数
    sk->prot->inuse += 1;
    // 最多使用的socket数
    if (sk->prot->highestinuse < sk->prot->inuse)
        sk->prot->highestinuse = sk->prot->inuse;
    // 链表为空,sk成为第一个节点
    if (sk->prot->sock_array[num] == NULL) 
    {
        sk->prot->sock_array[num] = sk;
        restore_flags(flags);
        return;
    }
    restore_flags(flags);
    // mask为0xff000000 => 0xffff0000 => 0xffffff00 => 0xffffffff
    for(mask = 0xff000000; mask != 0xffffffff; mask = (mask >> 8) | mask) 
    {
        if ((mask & sk->saddr) &&
            (mask & sk->saddr) != (mask & 0xffffffff)) 
        {
            mask = mask << 8;
            break;
        }
    }
    cli();
    // 根据端口找到对应的链表,找到对应的位置插入队列
    sk1 = sk->prot->sock_array[num];
    for(sk2 = sk1; sk2 != NULL; sk2=sk2->next) 
    {
        if (!(sk2->saddr & mask)) 
        {
            if (sk2 == sk1) 
            {
                sk->next = sk->prot->sock_array[num];
                sk->prot->sock_array[num] = sk;
                sti();
                return;
            }
            sk->next = sk2;
            sk1->next= sk;
            sti();
            return;
        }
        sk1 = sk2;
    }

    /* Goes at the end. */
    sk->next = NULL;
    sk1->next = sk;
    sti();
}

/*
 *    Remove a socket from the socket tables.
 */

static void remove_sock(struct sock *sk1)
{
    struct sock *sk2;
    unsigned long flags;

    if (!sk1->prot) 
    {
        printk("sock.c: remove_sock: sk1->prot == NULL\n");
        return;
    }

    /* We can't have this changing out from under us. */
    save_flags(flags);
    cli();
    sk2 = sk1->prot->sock_array[sk1->num &(SOCK_ARRAY_SIZE -1)];
    // 是队列的第一个节点
    if (sk2 == sk1) 
    {
        sk1->prot->inuse -= 1;
        sk1->prot->sock_array[sk1->num &(SOCK_ARRAY_SIZE -1)] = sk1->next;
        restore_flags(flags);
        return;
    }
    // 找sk1
    while(sk2 && sk2->next != sk1) 
    {
        sk2 = sk2->next;
    }
    // 找到
    if (sk2) 
    {
        sk1->prot->inuse -= 1;
        sk2->next = sk1->next;
        restore_flags(flags);
        return;
    }
    restore_flags(flags);
}

/*
 *    Destroy an AF_INET socket
 */

void destroy_sock(struct sock *sk)
{
    struct sk_buff *skb;

      sk->inuse = 1;          /* just to be safe. */

      /* In case it's sleeping somewhere. */
      if (!sk->dead) 
          sk->write_space(sk);

      remove_sock(sk);

      /* Now we can no longer get new packets. */
      delete_timer(sk);
      /* Nor send them */
    del_timer(&sk->retransmit_timer);

    while ((skb = tcp_dequeue_partial(sk)) != NULL) {
        IS_SKB(skb);
        kfree_skb(skb, FREE_WRITE);
    }

    /* Cleanup up the write buffer. */
      while((skb = skb_dequeue(&sk->write_queue)) != NULL) {
        IS_SKB(skb);
        kfree_skb(skb, FREE_WRITE);
      }

      /*
       *  Don't discard received data until the user side kills its
       *  half of the socket.
       */

    if (sk->dead) 
    {
          while((skb=skb_dequeue(&sk->receive_queue))!=NULL) 
          {
        /*
         * This will take care of closing sockets that were
         * listening and didn't accept everything.
         */
            // 处理listen型的socket,监听套接字接收队列里的skb关联的sock结构是一个新建的而不是sk
            if (skb->sk != NULL && skb->sk != sk) 
            {
                IS_SKB(skb);
                skb->sk->dead = 1;
                // 关闭连接
                skb->sk->prot->close(skb->sk, 0);
            }
            IS_SKB(skb);
            kfree_skb(skb, FREE_READ);
        }
    }   

    /* Now we need to clean up the send head. */
    cli();
    // 清空为了重传而缓存的数据包
    for(skb = sk->send_head; skb != NULL; )
    {
        struct sk_buff *skb2;

        /*
         * We need to remove skb from the transmit queue,
         * or maybe the arp queue.
         */
        if (skb->next  && skb->prev) {
/*            printk("destroy_sock: unlinked skb\n");*/
            IS_SKB(skb);
            skb_unlink(skb);
        }
        skb->dev = NULL;
        // unlink后link3指针仍然指向下一个skb节点
        skb2 = skb->link3;
        kfree_skb(skb, FREE_WRITE);
        skb = skb2;
    }
    sk->send_head = NULL;
    sti();

      /* And now the backlog. */
    // 还没来得及移到receive_queue队列的而缓存在back_log队列的skb
      while((skb=skb_dequeue(&sk->back_log))!=NULL) 
      {
        /* this should never happen. */
/*        printk("cleaning back_log\n");*/
        kfree_skb(skb, FREE_READ);
    }

    /* Now if it has a half accepted/ closed socket. */
    if (sk->pair) 
    {
        sk->pair->dead = 1;
        sk->pair->prot->close(sk->pair, 0);
        sk->pair = NULL;
      }

    /*
     * Now if everything is gone we can free the socket
     * structure, otherwise we need to keep it around until
     * everything is gone.
     */

      if (sk->dead && sk->rmem_alloc == 0 && sk->wmem_alloc == 0) 
      {
        kfree_s((void *)sk,sizeof(*sk));
      } 
      else 
      {
        /* this should never happen. */
        /* actually it can if an ack has just been sent. */
        sk->destroy = 1;
        sk->ack_backlog = 0;
        sk->inuse = 0;
        reset_timer(sk, TIME_DESTROY, SOCK_DESTROY_TIME);
      }
}


struct sock *get_sock(struct proto *prot, unsigned short num,
                unsigned long raddr,
                unsigned short rnum, unsigned long laddr)
{
    struct sock *s;
    struct sock *result = NULL;
    int badness = -1;
    unsigned short hnum;

    hnum = ntohs(num);

    /*
     * SOCK_ARRAY_SIZE must be a power of two.  This will work better
     * than a prime unless 3 or more sockets end up using the same
     * array entry.  This should not be a problem because most
     * well known sockets don't overlap that much, and for
     * the other ones, we can just be careful about picking our
     * socket number when we choose an arbitrary one.
     */

    for(s = prot->sock_array[hnum & (SOCK_ARRAY_SIZE - 1)];
            s != NULL; s = s->next) 
    {
        int score = 0;

        if (s->num != hnum) 
            continue;

        if(s->dead && (s->state == TCP_CLOSE))
            continue;
        /* local address matches? */
        if (s->saddr) {
            if (s->saddr != laddr)
                continue;
            score++;
        }
        /* remote address matches? */
        if (s->daddr) {
            if (s->daddr != raddr)
                continue;
            score++;
        }
        /* remote port matches? */
        if (s->dummy_th.dest) {
            if (s->dummy_th.dest != rnum)
                continue;
            score++;
        }
        /* perfect match? */
        // 全匹配,直接返回
        if (score == 3)
            return s;
        /* no, check if this is the best so far.. */
        if (score <= badness)
            continue;
        // 记录最好的匹配项
        result = s;
        badness = score;
      }
      return result;
}

协议每次新建一个socket的时候就会在底层生成一个sock结构体,然后插入大到哈希链表中,收到数据时候根据ip和端口从哈希链表中找到对应的sock结构体。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-02-17,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 编程杂技 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档