前戏
Amusi 将日常整理的论文都会同步发布到 daily-paper-computer-vision 上。名字有点露骨,还请见谅。喜欢的童鞋,欢迎star、fork和pull。
ECCV 2018是计算机视觉领域中的顶级会议,目前已经公开了部分已录用的paper。CVer 已经推送了9篇 ECCV 2018论文速递推文:
Semantic Segmentation
本文介绍两篇Amusi很喜欢的语义分割(Semantic Segmentation)论文。
《BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation》
ECCV 2018
Illustration of the architectures to speed up and our proposed approach
An overview of the Bilateral Segmentation Network.
摘要:语义分割(semantic segmentation)需要丰富的空间信息和相当大的感受野(receptive field)。但是,现代方法通常会牺牲空间分辨率(spatial resolution)来实现实时inference速度,从而导致性能不佳。在本文中,我们通过一种新颖的双边分割网络(Bilateral Segmentation Network,BiSeNet)来解决这一难题。我们首先设计一个小步幅的 Spatial Path,以保留空间信息并生成高分辨率特征。同时,采用具有快速下采样策略的 Context Path 来获得足够的感受野。在这两条 path 的顶部,我们引入了一个新的特征融合模块(Feature Fusion Module),以有效地结合特征。所提出的BiSeNet框架在Cityscapes,CamVid和COCO-Stuff数据集上的速度和分割性能之间取得了适当的平衡。具体来说,对于2048x1024输入,我们在Cityscapes测试数据集上实现了68.4%的Mean IOU,在一块NVIDIA Titan XP卡上的速度为105 FPS,这明显快于当前其它可比的方法。
arXiv:http://arxiv.org/abs/1808.00897
注:源码还未放出
《Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training》
ECCV 2018
Illustration of the proposed itertive self-training framework for unsupervised domain adaptation. Left: algorithm workflow. Right figure: semantic segmentation results on Cityscapes before and after adaptation
摘要:最近的深度网络在各种语义分割任务上实现了最先进的性能。尽管取得了这些进展,但这些模型经常面临现实世界“wild tasks”中的挑战,其中存在标记的训练/源数据与看不见的测试/目标数据之间的巨大差异。特别地,这种差异通常被称为“domain gap”,并且可能导致显著的性能降低。这并不能通过进一步增加表示能力而容易地补救。无监督域适应(Unsupervised Domain Adaptation,UDA)试图在没有目标域标签的情况下克服这种问题。在本文中,我们提出了一种基于迭代自训练(Self-training,ST)过程的新型UDA框架,其中该问题被公式化为潜在变量损失最小化,并且可以通过在目标数据上交替生成伪标签(pseudo labels)并重新训练来解决。带有这些标签的模型。在ST之上,我们还提出了一种新颖的类平衡自我训练(Class Balanced Self-training,CBST)框架,avoid the gradual dominance of large classes on pseudo-label generation,并引入空间先验(spatial prior)来细化生成的标签。综合实验表明,所提出的方法在多个主要UDA设置下实现了最先进的语义分割性能。
paper:
http://openaccess.thecvf.com/content_ECCV_2018/papers/Yang_Zou_Unsupervised_Domain_Adaptation_ECCV_2018_paper.pdf
注:源码还未放出
希望上述两篇ECCV 2018 最新的paper可以给你带来一点灵感~