前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tensorflow: 激活函数(Activation_Functions) 探究

tensorflow: 激活函数(Activation_Functions) 探究

作者头像
JNingWei
发布2018-09-28 15:57:07
8080
发布2018-09-28 15:57:07
举报
文章被收录于专栏:JNing的专栏

激活函数概念

From TensorFlow - Activation_Functions

在神经网络中,我们有很多的 非线性函数 来作为 激活函数

连续 、平滑

tf.sigmoid(x, name = None) == 1 / (1 + exp(-x))

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.sigmoid(bn)
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[ 2.42429203 -1.89521415  4.52536321  2.02200042 -0.46109594]
 [-5.37984794  3.82258344  3.05039891  5.35911657  4.04462726]
 [-3.79266918 -7.12570837  1.74167827 -0.85649631 -3.77669239]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[  9.18661034e-01   1.30651098e-01   9.89285269e-01   8.83087698e-01
    3.86725869e-01]
 [  4.58738158e-03   9.78596887e-01   9.54799746e-01   9.95316973e-01
    9.82785304e-01]
 [  2.20387197e-02   8.03517003e-04   8.50900112e-01   2.98071887e-01
    2.23857102e-02]]

tf.tanh(x, name = None) == ( exp(x) - exp(-x) ) / ( exp(x) + exp(-x) )

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.tanh(bn)
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[-1.43756487 -0.82183219  2.83650212 -0.86855883 -2.54894335]
 [ 2.3639829  -5.23813843  6.94823124 -6.59737671  3.62198313]
 [ 9.15073151  2.82883771 -4.40860502 -5.96409016 -2.74915937]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[-0.89320646 -0.67606587  0.99314851 -0.70064117 -0.98785491]
 [ 0.98246619 -0.99994361  0.99999816 -0.99999628  0.99857208]
 [ 0.99999998  0.99304304 -0.99970372 -0.9999868  -0.99184608]]

tf.nn.softplus(features, name = None) == log ( exp( features ) + 1)

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.softplus(bn)
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[ 2.3897838  -9.86605463 -7.58004249 -4.38702367 -1.44367065]
 [ 7.52588384  6.49497224 -4.37733996 -0.68677868 -2.12110005]
 [-6.35464811 -1.70150615  6.51252343 -0.12833586  4.36898049]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[  2.47747365e+00   5.19057707e-05   5.10409248e-04   1.23609802e-02
    2.11928637e-01]
 [  7.52642265e+00   6.49648212e+00   1.24805143e-02   4.07592450e-01
    1.13239092e-01]
 [  1.73713721e-03   1.67553530e-01   6.51400705e+00   6.31036601e-01
    4.38156511e+00]]

连续、不平滑

tf.nn.relu(features, name = None) == max (features, 0)

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.relu(bn)
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[ 4.34288636 -3.14906286 -5.21796011 -2.77006242 -4.92871322]
 [ 9.07049557 -9.64290379 -5.91523423  1.59385546 -2.04672855]
 [-4.10765782  1.51740207 -0.5572445   8.21818142 -4.67065521]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[ 4.34288636  0.          0.          0.          0.        ]
 [ 9.07049557  0.          0.          1.59385546  0.        ]
 [ 0.          1.51740207  0.          8.21818142  0.        ]]

tf.nn.relu6(features, name = None) == min ( max(features, 0), 6 )

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.relu6(bn)
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[ 6.08205437  7.72360999 -1.62220085  5.41621866  5.8087728 ]
 [-5.07454654  3.85471614  1.44742944  2.77378759  3.61971044]
 [ 5.43383943  1.9598894  -2.5352505  -1.38550512  3.64028622]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[ 6.          6.          0.          5.41621866  5.8087728 ]
 [ 0.          3.85471614  1.44742944  2.77378759  3.61971044]
 [ 5.43383943  1.9598894   0.          0.          3.64028622]]

tf.nn.bias_add(value, bias, name = None) == value + bias (bias是一维的)

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.bias_add(value=bn, bias=np.ones_like(bn[0]))
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[-7.24470546  1.40561024  2.27976912 -6.22879516  4.98934916]
 [-9.75160657  6.78796922  0.60843038 -4.94145474 -0.98402315]
 [-7.02590057  1.98236592  0.85727947  0.08917467 -5.54994355]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[-6.24470546  2.40561024  3.27976912 -5.22879516  5.98934916]
 [-8.75160657  7.78796922  1.60843038 -3.94145474  0.01597685]
 [-6.02590057  2.98236592  1.85727947  1.08917467 -4.54994355]]

随机正则化

tf.nn.dropout(x, keep_prob, noise_shape = None, seed = None, name = None) == keep_prob概率 的神经元输出值将被放大到原来的 1/keep_prob 倍,其余神经元的输出置 0

代码语言:javascript
复制
import numpy as np
import tensorflow as tf

sess = tf.Session()
bn = np.random.normal(0, 5, [3, 5])

print bn.shape, type(bn), ':'
print bn
print
output = tf.nn.dropout(x=bn, keep_prob=0.5)
print output.shape, type(output), ':'
print sess.run(output)
代码语言:javascript
复制
(3, 5) <type 'numpy.ndarray'> :
[[ -6.63260663   5.18248388  -2.64777118  -0.98104194  -4.21568201]
 [  0.94315835   5.73277238  -0.27942206   0.93593509  10.41087634]
 [  0.18322279   5.72198372   5.00533604  -1.80672579  -2.32201658]]

(3, 5) <class 'tensorflow.python.framework.ops.Tensor'> :
[[ -0.           0.          -5.29554235  -1.96208389  -0.        ]
 [  1.88631669   0.          -0.55884411   1.87187017  20.82175267]
 [  0.          11.44396745   0.          -0.          -0.        ]]


本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年09月05日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 激活函数概念
  • 连续 、平滑
  • 连续、不平滑
  • 随机正则化
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档