# The n-queens puzzle is the problem of placing n queens on
# an nxn chess board such that no two queens attack each other.
#
# Given an integer n, return all distinct solutions to the n-queens puzzle.
#
# Each solution contains a distinct board configuration of the n-queens' placement,
# where 'Q' and '.' both indicate a queen and an empty space respectively.
#
# For example,
# There exist two distinct solutions to the 4-queens puzzle:
#
# [
# [".Q..", // Solution 1
# "...Q",
# "Q...",
# "..Q."],
#
# ["..Q.", // Solution 2
# "Q...",
# "...Q",
# ".Q.."]
# ]
1. 逐行放置皇后:排除在同一行的可能。
2. 记录之前所放皇后的列坐标:col[i]=j表示第i行的皇后在第j列。这样在放置第i+1行时,只要保证col[i+1] != col[k], k=0...i 即可。
3. 对角线判断:对于任意(i1, col[i1])和(i2, col[i2]),只有当abs(i1-i2) = abs(col[i1]-col[i2])时,两皇后才在同一对角线。
class Solution():
def solveNQueens(self, n):
from functools import reduce
def solveNQueensRecu(solution, row, n):
if row == n:
solutions.append(list(map(lambda x: '.' * x + "Q" + '.' * (n - x - 1), solution)))
else:
for i in range(n):
if i not in solution and reduce(lambda acc, j: abs(row - j) != abs(i - solution[j]) and acc, range(len(solution)), True):
solveNQueensRecu(solution + [i], row + 1, n)
solutions = []
solveNQueensRecu([], 0, n)
return solutions
if __name__ == "__main__":
assert Solution().solveNQueens(4) == [['.Q..', '...Q', 'Q...', '..Q.'], ['..Q.', 'Q...', '...Q', '.Q..']]