Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Python3 与 C# 并发编程之~ 进程篇下

Python3 与 C# 并发编程之~ 进程篇下

作者头像
逸鹏
发布于 2018-08-14 06:33:06
发布于 2018-08-14 06:33:06
1.5K00
代码可运行
举报
文章被收录于专栏:逸鹏说道逸鹏说道
运行总次数:0
代码可运行

1.5.进程间通信~PIPE管道通信

这个比较有意思,看个案例:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from multiprocessing import Process, Pipe

def test(w):
    w.send("[子进程]老爸,老妈回来记得喊我一下~")
    msg = w.recv()
    print(msg)

def main():
    r, w = Pipe()
    p1 = Process(target=test, args=(w, ))
    p1.start()
    msg = r.recv()
    print(msg)
    r.send("[父进程]滚犊子,赶紧写作业,不然我得跪方便面!")
    p1.join()

if __name__ == '__main__':
    main()

结果:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
老爸,老妈回来记得喊我一下~
滚犊子,赶紧写作业,不然我得跪方便面!
multiprocessing.Pipe源码分析

按照道理应该子进程自己写完自己读了,和上次讲得不一样啊?不急,先看看源码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# https://github.com/lotapp/cpython3/blob/master/Lib/multiprocessing/context.py
def Pipe(self, duplex=True):
    '''返回由管道连接的两个连接对象'''
    from .connection import Pipe
    return Pipe(duplex)

看看 connection.Pipe方法的定义部分,是不是双向通信就看你是否设置 duplex=True

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# https://github.com/lotapp/cpython3/blob/master/Lib/multiprocessing/connection.py
if sys.platform != 'win32':
    def Pipe(duplex=True):
        '''返回管道两端的一对连接对象'''
        if duplex:
            # 双工内部其实是socket系列(下次讲)
            s1, s2 = socket.socketpair()
            s1.setblocking(True)
            s2.setblocking(True)
            c1 = Connection(s1.detach())
            c2 = Connection(s2.detach())
        else:
            # 这部分就是我们上次讲的pipe管道
            fd1, fd2 = os.pipe()
            c1 = Connection(fd1, writable=False)
            c2 = Connection(fd2, readable=False)
        return c1, c2
else: 
    def Pipe(duplex=True):
        # win平台的一系列处理
        ......
        c1 = PipeConnection(h1, writable=duplex)
        c2 = PipeConnection(h2, readable=duplex)
        return c1, c2

通过源码知道了,原来双工是通过socket搞的啊~

再看个和原来一样效果的案例:(不用关来关去的了,方便!)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from multiprocessing import Process, Pipe

def test(w):
    # 只能写
    w.send("[子进程]老爸,咱们完了,老妈一直在门口~")

def main():
    r, w = Pipe(duplex=False)
    p1 = Process(target=test, args=(w, ))
    p1.start() # 你把这个放在join前面就直接死锁了
    msg = r.recv() # 只能读
    print(msg)
    p1.join()

if __name__ == '__main__':
    main()

输出:(可以思考下为什么 start换个位置就死锁,提示: 阻塞读写

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[子进程]老爸,咱们完了,老妈一直在门口~

再举个 Pool的例子,咱们就进入今天的重点了:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from multiprocessing import Pipe, Pool

def proc_test1(conn):
    conn.send("[小明]小张,今天哥们要见一女孩,你陪我呗,我24h等你回复哦~")
    msg = conn.recv()
    print(msg)

def proc_test2(conn):
    msg = conn.recv()
    print(msg)
    conn.send("[小张]不去,万一被我帅气的外表迷倒就坑了~")

def main():
    conn1, conn2 = Pipe()
    p = Pool()
    p.apply_async(proc_test1, (conn1, ))
    p.apply_async(proc_test2, (conn2, ))
    p.close()  # 关闭池,不再接收新任务
    p.join()  # 等待回收,必须先关才能join,不然会异常

if __name__ == '__main__':
    main()

输出:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[小明]小张,今天哥们要见一女孩,你陪我呗,我24h等你回复哦~
[小张]不去,万一被我帅气的外表迷倒就坑了~
pool.join源码分析

看看源码就理解了:看看Pool的join是啥情况?看源码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# https://github.com/python/cpython/blob/3.7/Lib/multiprocessing/pool.py
# https://github.com/lotapp/cpython3/blob/master/Lib/multiprocessing/pool.py
def join(self):
    util.debug('joining pool')
    if self._state == RUN:
        # 没关闭就join,这边就会抛出一个异常
        raise ValueError("Pool is still running")
    elif self._state not in (CLOSE, TERMINATE):
        raise ValueError("In unknown state")
    self._worker_handler.join()
    self._task_handler.join()
    self._result_handler.join()
    for p in self._pool:
        p.join() # 循环join回收

在pool的 __init__的方法中,这几个属性:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
self._processes = processes # 指定的进程数
self._pool = [] # 列表
self._repopulate_pool() # 给列表append内容的方法

将池进程的数量增加到指定的数量,join的时候会使用这个列表

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def _repopulate_pool(self):
    # 指定进程数-当前进程数,差几个补几个
    for i in range(self._processes - len(self._pool)):
        w = self.Process(target=worker,
                         args=(self._inqueue, self._outqueue,
                               self._initializer,
                               self._initargs, self._maxtasksperchild,
                               self._wrap_exception)
                        )
        self._pool.append(w) # 重点来了
        w.name = w.name.replace('Process', 'PoolWorker')
        w.daemon = True # pool退出后,通过pool创建的进程都会退出
        w.start()
        util.debug('added worker')

1.5.进程间通信~Queue管道通信(常用)

一步步的设局,从底层的的 pipe()-> os.pipe-> PIPE,现在终于到 Queue了,心酸啊,明知道上面两个项目

里面基本上不会用,但为了你们能看懂源码,说了这么久 %>_<%其实以后当我们从 Queue说到 MQRPC之后,现在

讲得这些进程间通信( IPC)也基本上不会用了,但本质你得清楚,我尽量多分析点源码,这样你们以后看开源项目压力会很小

欢迎批评指正~

引入案例
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from multiprocessing import Process, Queue

def test(q):
    q.put("[子进程]老爸,我出去嗨了")
    print(q.get())

def main():
    q = Queue()
    p = Process(target=test, args=(q, ))
    p.start()
    msg = q.get()
    print(msg)
    q.put("[父进程]去吧比卡丘~")
    p.join()

if __name__ == '__main__':
    main()

输出:( getput默认是阻塞等待的)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[子进程]老爸,我出去嗨了
[父进程]去吧比卡丘~
源码拓展

先看看 Queue的初始化方法:(不指定大小就是最大队列数)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# 队列类型,使用PIPE,缓存,线程
class Queue(object):
    # ctx = multiprocessing.get_context("xxx")
    # 上下文总共3种:spawn、fork、forkserver(扩展部分会提一下)
    def __init__(self, maxsize=0, *, ctx):
        # 默认使用最大容量
        if maxsize <= 0:
            from .synchronize import SEM_VALUE_MAX as maxsize
        self._maxsize = maxsize  # 指定队列大小
        # 创建了一个PIPE匿名管道(单向)
        self._reader, self._writer = connection.Pipe(duplex=False)
        # `multiprocessing/synchronize.py > Lock`
        self._rlock = ctx.Lock()  # 进程锁(读)【非递归】
        self._opid = os.getpid()  # 获取PID
        if sys.platform == 'win32':
            self._wlock = None
        else:
            self._wlock = ctx.Lock()  # 进程锁(写)【非递归】
        # Semaphore信号量通常用于保护容量有限的资源
        # 控制信号量,超了就异常
        self._sem = ctx.BoundedSemaphore(maxsize)
        # 不忽略PIPE管道破裂的错误
        self._ignore_epipe = False 
        # 线程相关操作
        self._after_fork()
        # 向`_afterfork_registry`字典中注册
        if sys.platform != 'win32':
            register_after_fork(self, Queue._after_fork)

关于 getput是阻塞的问题,看下源码探探究竟:

q.get():收消息

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def get(self, block=True, timeout=None):
    # 默认情况是阻塞(lock加锁)
    if block and timeout is None:
        with self._rlock:
            res = self._recv_bytes()
        self._sem.release()  # 信号量+1
    else:
        if block:
            deadline = time.monotonic() + timeout
        # 超时抛异常
        if not self._rlock.acquire(block, timeout):
            raise Empty
        try:
            if block:
                timeout = deadline - time.monotonic()
                # 不管有没有内容都去读,超时就抛异常
                if not self._poll(timeout):
                    raise Empty
            elif not self._poll():
                raise Empty
            # 接收字节数据作为字节对象
            res = self._recv_bytes()
            self._sem.release()  # 信号量+1
        finally:
            # 释放锁
            self._rlock.release()
    # 释放锁后,重新序列化数据
    return _ForkingPickler.loads(res)

queue.put():发消息

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def put(self, obj, block=True, timeout=None):
        # 如果Queue已经关闭就抛异常
        assert not self._closed, "Queue {0!r} has been closed".format(self)
        # 记录信号量的锁
        if not self._sem.acquire(block, timeout):
            raise Full  # 超过数量,抛个异常
        # 条件变量允许一个或多个线程等待,直到另一个线程通知它们
        with self._notempty:
            if self._thread is None:
                self._start_thread()
            self._buffer.append(obj)
            self._notempty.notify()

非阻塞 get_nowaitput_nowait本质其实也是调用了 getput方法:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def get_nowait(self):
    return self.get(False)

def put_nowait(self, obj):
    return self.put(obj, False)
进程间通信1

说这么多不如来个例子看看:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from multiprocessing import Queue

def main():
    q = Queue(3)  # 只能 put 3条消息
    q.put([1, 2, 3, 4])  # put一个List类型的消息
    q.put({"a": 1, "b": 2})  # put一个Dict类型的消息
    q.put({1, 2, 3, 4})  # put一个Set类型的消息

    try:
        # 不加timeout,就一直阻塞,等消息队列有空位才能发出去
        q.put("再加条消息呗", timeout=2)
    # Full(Exception)是空实现,你可以直接用Exception
    except Exception:
        print("消息队列已满,队列数%s,当前存在%s条消息" % (q._maxsize, q.qsize()))

    try:
        # 非阻塞,不能put就抛异常
        q.put_nowait("再加条消息呗")  # 相当于q.put(obj,False)
    except Exception:
        print("消息队列已满,队列数%s,当前存在%s条消息" % (q._maxsize, q.qsize()))

    while not q.empty():
        print("队列数:%s,当前存在%s条消息 内容%s" % (q._maxsize, q.qsize(), q.get_nowait()))

    print("队列数:%s,当前存在:%s条消息" % (q._maxsize, q.qsize()))

if __name__ == '__main__':
    main()

输出:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
消息队列已满,队列数3,当前存在3条消息
消息队列已满,队列数3,当前存在3条消息
队列数:3,当前存在3条消息 内容[1, 2, 3, 4]
队列数:3,当前存在2条消息 内容{'a': 1, 'b': 2}
队列数:3,当前存在1条消息 内容{1, 2, 3, 4}
队列数:3,当前存在:0条消息

补充说明一下:

  1. q._maxsize 队列数(尽量不用 _开头的属性和方法)
  2. q.qsize()查看当前队列中存在几条消息
  3. q.full()查看是否满了
  4. q.empty()查看是否为空

再看个简单点的子进程间通信:(铺垫demo)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import os
import time
from multiprocessing import Process, Queue

def pro_test1(q):
    print("[子进程1]PPID=%d,PID=%d,GID=%d"%(os.getppid(), os.getpid(), os.getgid()))
    q.put("[子进程1]小明,今晚撸串不?")

    # 设置一个简版的重试机制(三次重试)
    for i in range(3):
        if not q.empty():
            print(q.get())
            break
        else:
            time.sleep((i + 1) * 2)  # 第一次1s,第二次4s,第三次6s

def pro_test2(q):
    print("[子进程2]PPID=%d,PID=%d,GID=%d"%(os.getppid(), os.getpid(), os.getgid()))
    print(q.get())
    time.sleep(4)  # 模拟一下网络延迟
    q.put("[子进程2]不去,我今天约了妹子")

def main():
    queue = Queue()
    p1 = Process(target=pro_test1, args=(queue, ))
    p2 = Process(target=pro_test2, args=(queue, ))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

if __name__ == '__main__':
    main()

输出:( time python35.queue2.py

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[子进程1]PPID=15220,PID=15221,GID=1000
[子进程2]PPID=15220,PID=15222,GID=1000
[子进程1]小明,今晚撸串不?
[子进程2]不去,我今天约了妹子

real    0m6.087s
user    0m0.053s
sys    0m0.035s

进程间通信2

多进程基本上都是用 pool,可用上面说的 Queue方法怎么报错了?

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import os
import time
from multiprocessing import Pool, Queue

def error_callback(msg):
    print(msg)

def pro_test1(q):
    print("[子进程1]PPID=%d,PID=%d,GID=%d" % (os.getppid(), os.getpid(),
                                           os.getgid()))
    q.put("[子进程1]小明,今晚撸串不?")

    # 设置一个简版的重试机制(三次重试)
    for i in range(3):
        if not q.empty():
            print(q.get())
            break
        else:
            time.sleep((i + 1) * 2)  # 第一次1s,第二次4s,第三次6s

def pro_test2(q):
    print("[子进程2]PPID=%d,PID=%d,GID=%d" % (os.getppid(), os.getpid(),
                                           os.getgid()))
    print(q.get())
    time.sleep(4)  # 模拟一下网络延迟
    q.put("[子进程2]不去,我今天约了妹子")

def main():
    print("[父进程]PPID=%d,PID=%d,GID=%d" % (os.getppid(), os.getpid(),
                                          os.getgid()))
    queue = Queue()
    p = Pool()
    p.apply_async(pro_test1, args=(queue, ), error_callback=error_callback)
    p.apply_async(pro_test2, args=(queue, ), error_callback=error_callback)
    p.close()
    p.join()

if __name__ == '__main__':
    main()

输出:(队列对象不能在父进程与子进程间通信)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[父进程]PPID=4223,PID=32170,GID=1000
Queue objects should only be shared between processes through inheritance
Queue objects should only be shared between processes through inheritance

real    0m0.183s
user    0m0.083s
sys    0m0.012s

下面会详说,先看一下正确方式:(队列换了一下,其他都一样 Manager().Queue()

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import os
import time
from multiprocessing import Pool, Manager

def error_callback(msg):
    print(msg)

def pro_test1(q):
    print("[子进程1]PPID=%d,PID=%d,GID=%d" % (os.getppid(), os.getpid(),
                                           os.getgid()))
    q.put("[子进程1]小明,今晚撸串不?")

    # 设置一个简版的重试机制(三次重试)
    for i in range(3):
        if not q.empty():
            print(q.get())
            break
        else:
            time.sleep((i + 1) * 2)  # 第一次1s,第二次4s,第三次6s

def pro_test2(q):
    print("[子进程2]PPID=%d,PID=%d,GID=%d" % (os.getppid(), os.getpid(),
                                           os.getgid()))
    print(q.get())
    time.sleep(4)  # 模拟一下网络延迟
    q.put("[子进程2]不去,我今天约了妹子")

def main():
    print("[父进程]PPID=%d,PID=%d,GID=%d" % (os.getppid(), os.getpid(),
                                          os.getgid()))
    queue = Manager().Queue()
    p = Pool()
    p.apply_async(pro_test1, args=(queue, ), error_callback=error_callback)
    p.apply_async(pro_test2, args=(queue, ), error_callback=error_callback)
    p.close()
    p.join()

if __name__ == '__main__':
    main()

输出:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[父进程]PPID=4223,PID=31329,GID=1000
[子进程1]PPID=31329,PID=31335,GID=1000
[子进程2]PPID=31329,PID=31336,GID=1000
[子进程1]小明,今晚撸串不?
[子进程2]不去,我今天约了妹子

real    0m6.134s
user    0m0.133s
sys    0m0.035s

进程拓展

官方参考:https://docs.python.org/3/library/multiprocessing.html

1.上下文系
  1. spawn:(Win默认,Linux下也可以用【>=3.4】)
    1. 父进程启动一个新的python解释器进程。
    2. 子进程只会继承运行进程对象run()方法所需的那些资源。
    3. 不会继承父进程中不必要的文件描述符和句柄。
    4. 与使用fork或forkserver相比,使用此方法启动进程相当慢。
    5. 可在UnixWindows上使用。Windows上的默认设置。
  2. fork:(Linux下默认)
    1. 父进程用于os.fork()分叉Python解释器。
    2. 子进程在开始时与父进程相同(这时候内部变量之类的还没有被修改)
    3. 父进程的所有资源都由子进程继承(用到多线程的时候可能有些问题)
    4. 仅适用于Unix。Unix上的默认值。
  3. forkserver:(常用)
    1. 当程序启动并选择forkserver start方法时,将启动服务器进程。
    2. 从那时起,每当需要一个新进程时,父进程就会连接到服务器并请求它分叉一个新进程。
    3. fork服务器进程是单线程的,因此它可以安全使用os.fork()。没有不必要的资源被继承。
    4. 可在Unix平台上使用,支持通过Unix管道传递文件描述符。

这块官方文档很详细,贴下官方的2个案例:

通过 multiprocessing.set_start_method(xxx)来设置启动的上下文类型

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import multiprocessing as mp

def foo(q):
    q.put('hello')

if __name__ == '__main__':
    mp.set_start_method('spawn') # 不要过多使用
    q = mp.Queue()
    p = mp.Process(target=foo, args=(q,))
    p.start()
    print(q.get())
    p.join()

输出:( set_start_method不要过多使用)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
hello

real    0m0.407s
user    0m0.134s
sys        0m0.012s

如果你把设置启动上下文注释掉:(消耗的总时间少了很多)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
real    0m0.072s
user    0m0.057s
sys        0m0.016s

也可以通过 multiprocessing.get_context(xxx)获取指定类型的上下文

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import multiprocessing as mp

def foo(q):
    q.put('hello')

if __name__ == '__main__':
    ctx = mp.get_context('spawn')
    q = ctx.Queue()
    p = ctx.Process(target=foo, args=(q,))
    p.start()
    print(q.get())
    p.join()

输出:( get_context在Python源码里用的比较多,so=>也建议大家这么用)

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
hello

real    0m0.169s
user    0m0.146s
sys    0m0.024s

从结果来看,总耗时也少了很多


2.日记系列

说下日记相关的事情:

先看下 multiprocessing里面的日记记录:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# https://github.com/lotapp/cpython3/blob/master/Lib/multiprocessing/context.py
def log_to_stderr(self, level=None):
    '''打开日志记录并添加一个打印到stderr的处理程序'''
    from .util import log_to_stderr
    return log_to_stderr(level)

更多 Loging模块内容可以看官方文档:https://docs.python.org/3/library/logging.html

这个是内部代码,看看即可:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# https://github.com/lotapp/cpython3/blob/master/Lib/multiprocessing/util.py
def log_to_stderr(level=None):
    '''打开日志记录并添加一个打印到stderr的处理程序'''
    # 全局变量默认是False
    global _log_to_stderr
    import logging

    # 日记记录转换成文本
    formatter = logging.Formatter(DEFAULT_LOGGING_FORMAT)
    # 一个处理程序类,它将已适当格式化的日志记录写入流
    handler = logging.StreamHandler()  # 此类不会关闭流,因为用到了sys.stdout|sys.stderr
    # 设置格式:'[%(levelname)s/%(processName)s] %(message)s'
    handler.setFormatter(formatter)

    # 返回`multiprocessing`专用的记录器
    logger = get_logger()
    # 添加处理程序
    logger.addHandler(handler)

    if level:
        # 设置日记级别
        logger.setLevel(level)
    # 现在log是输出到stderr的
    _log_to_stderr = True
    return _logger

Logging之前也有提过,可以看看:https://www.cnblogs.com/dotnetcrazy/p/9333792.html#2.装饰器传参的扩展(可传可不传)

来个案例:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import logging
from multiprocessing import Process, log_to_stderr

def test():
    print("test")

def start_log():
    # 把日记输出定向到sys.stderr中
    logger = log_to_stderr()
    # 设置日记记录级别
    # 敏感程度:DEBUGINFOWARNERRORCRITICAL
    print(logging.WARN == logging.WARNING)  # 这两个是一样的
    level = logging.INFO
    logger.setLevel(level)  # 设置日记级别(一般都是WARN)

    # 自定义输出
    # def log(self, level, msg, *args, **kwargs):
    logger.log(level, "我是通用格式")  # 通用,下面的内部也是调用的这个
    logger.info("info 测试")
    logger.warning("warning 测试")
    logger.error("error 测试")

def main():
    start_log()
    # 做的操作都会被记录下来
    p = Process(target=test)
    p.start()
    p.join()

if __name__ == '__main__':
    main()

输出:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
True
[INFO/MainProcess] 我是通用格式
[INFO/MainProcess] info 测试
[WARNING/MainProcess] warning 测试
[ERROR/MainProcess] error 测试
[INFO/Process-1] child process calling self.run()
test
[INFO/Process-1] process shutting down
[INFO/Process-1] process exiting with exitcode 0
[INFO/MainProcess] process shutting down

3.进程5态

之前忘记说了~现在快结尾了,补充一下进程5态:(来个草图)

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-08-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 我为Net狂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Python3 与 C# 并发编程之~ 进程实战篇
之前说过 Queue:在 Process之间使用没问题,用到 Pool,就使用 Manager().xxx, Value和 Array,就不太一样了:
逸鹏
2018/09/07
9650
Python3 与 C# 并发编程之~ 进程实战篇
Python3 与 C# 并发编程之~ 进程篇上
上次说了很多Linux下进程相关知识,这边不再复述,下面来说说Python的并发编程,如有错误欢迎提出~
逸鹏
2018/08/14
6150
Python3 与 C# 并发编程之~ 进程篇上
Python 标准类库-并发执行之multiprocessing-基于进程的并行
multiprocessing是一个支持使用类似于线程模块的API派生进程的包。该包同时提供本地和远程并发,通过使用子进程而不是线程,有效地避开了全局解释器锁。因此,multiprocessing模块允许程序员充分利用给定机器上的多个处理器。它同时在Unix和Windows上运行。
授客
2023/07/10
8390
2.并发编程多编程
​ python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。 ​ multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。
changxin7
2019/08/20
1.2K0
Python自学成才之路 进程间通信
程序在创建子进程时,会完全复制一份主进程的环境,包括变量,函数,类等。所以在子进程中使用的变量,函数,类和主进程之间隔离的,子进程之间也是隔离的。 看下面这个案例:
我是李超人
2020/09/07
4340
Python的进程
Python实现多进程的方式主要有两种:一种方法是使用os模块中的fork方法; 另一种是使用multiprocessing模块。这两种方法的区别在于前者仅适用于Unix/Linux操作操作。对win是不支持的,而后者则是跨平台的实现方式。
龙哥
2018/10/22
6770
python并发编程之多进程
 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。Python提供了multiprocessing。     multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似。
py3study
2020/01/19
3730
python并发编程之多进程
第36天并发编程之进程篇
步骤一:创建一个py程序,用来打印三个人的信息,创建了三个函数,每个函数里面都有一个sleep来模拟网络延迟,因此我们写出了下面的代码
py3study
2020/01/20
4100
python并发编程之多进程(实现)
一、multipricessing模块的介绍      python中的多线程无法利用多核优势,如果想要充分的使用多核CPU资源,在python中大部分情况下需要用多线程,python提供了multiprocessing模块      multiprocessing模块用来开启子进程,并在子进程中执行我们的任务(比如函数),该模块与多线程模块threading类的编程接口类似。   multiprocessing模块的功能众多:支持子进程、通信和共享数据,执行不同形式的同步,提供了Process类,Queu
人生不如戏
2018/04/12
1.2K0
并发编程(二)
参考:https://blog.csdn.net/qq_34337272/article/details/81072874
HammerZe
2022/03/24
2110
并发编程(二)
Python | Python学习之多进程详解
我们经常迷惑于多进程和多线程,长的好像一样,但是他们有本质上的区别,很多大佬也对进程和线程的概念做了很多通俗易懂的解释,这里我们引用阮一峰老师的博文,大家可以先去看看,理清楚线程和进程的区别。
咸鱼学Python
2019/10/09
1.1K0
Python 线程&进程与协程
线程是进程的执行单元,对于大多数程序来说,可能只有一个主线程,但是为了能够提高效率,有些程序会采用多线程,在系统中所有的线程看起来都是同时执行的,例如,现在的多线程网络下载程序中,就使用了这种线程并发的特性,程序将欲下载的文件分成多个部分,然后同时进行下载,从而加快速度.虽然线程并不是一个容易掌握和使用的概念,但是如果运用得当,还是可以获得很不错的性能的.
王瑞MVP
2022/12/28
7880
python3--队列Queue,管道Pipe,进程之间的数据共享,进程池Pool,回调函数callback
既打印了主进程put的值,也打印了子进程put的值,在进程中使用队列可以完成双向通信
py3study
2018/08/02
4.3K0
python进程回顾
pro = multiprocessing.Process(target=入口, args=(), kwargs={})
小闫同学啊
2019/07/18
6270
Python实现进程同步和通信
如第3行的输出,偶尔会出现这样不如意的输入格式,为什么呢? 原因是多个进程争用打印输出资源的结果。前一个进程为来得急输出换行符,该资源就切换给了另一个进程使用,致使两个进程输出在同一行上,而前一个进程的换行符在下一次获得资源时才打印输出。
py3study
2020/01/03
6860
Python进程
Python在2.6引入了多进程的机制,并提供了丰富的组件及api以方便编写并发应用。multiprocessing包的组件Process, Queue, Pipe, Lock等组件提供了与多线程类似的功能。使用这些组件,可以方便地编写多进程并发程序。
py3study
2020/01/09
9390
42.python 进程间通信Queue/Pipe
1.在前一篇文章 python进程Process与线程threading区别 中讲到线程threading共享内存地址,进程与进程Peocess之间相互独立,互不影响(相当于深拷贝);
猿说编程[Python和C]
2020/03/12
3.6K0
Python 进阶(二):多进程
进程:通常一个运行着的应用程序就是一个进程,比如:我启动了一个音乐播放器,现在它就是一个进程。线程:线程是进程的最小执行单元,比如:我在刚启动的音乐播放器上选了一首歌曲进行播放,这就是一个线程。
Python小二
2020/08/18
4410
1.并发编程~先导篇(上)
并发 :一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理机上运行,但任一个时刻点上只有一个程序在处理机上运行。
逸鹏
2018/08/14
1.5K0
1.并发编程~先导篇(上)
python之多进程
python中的多线程无法利用多核优势,如果想要充分地使用多核cpu的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程。python提供了multiprocessing
py3study
2020/01/19
9660
相关推荐
Python3 与 C# 并发编程之~ 进程实战篇
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验