特征元素(identity element)
别名:neutral element.
For a binary operation is an element in the set that doesn't change the value of other elements when combined with then under the operation.
0 is the identity element for addition.
1 is the identity element for multiplication.
Inverse elements
For addition, -x is the inverse element of x, since -x + x = 0.
For multiplication, 1/x is the inverse element of x, since 1/x * x = 1.
Algebraic structure
an algebraic structure is a set (called carrier set or underlying set) with one or more finitary operations defined on it that satisfies a list of axioms.
代数结构的比较概念
态射(morphism)
记做:f : A \to B 。可以认为是两个域(domain)或集合中元素的映射关系。
这个词太哲学化,在数学上的含义,可以简单地理解为映射函数。有人用 morphism = arrow + function。
在抽象代数中讨论了一个集合间映射函数的关系。
同构(isomorphisms)
代数结构A和B相同,除了它们的元素有不同的名字,可以认为这两个代数结构同构,记做:$f : A \cong B $。
同态(homomorphisms)
代数结构A和B不同,但是存在一种元素的映射关系,可以认为这两个代数结构同态,记做:f : A \to B 。
单同态(monomorphisms)
当同态函数f : A \to B 是一个单射(injective)函数,称之为一个单同态。
满同态(epimorphisms)
当同态函数f : A \to B 是一个满射(surjective)函数,称之为一个满同态。
自同态(endomorphisms)
如果一个代数结构A和自己同态,f : A \to A ,称之为自同态。
自同构,自守(automorphisms)
如果一个代数结构A和自己同构,f : A \cong A ,称之为自同构。
Subtraction
The different of tow elements x and y is defined as x - y = x + (-y) .
Division
The quotient of tow elements x and a nonzero element y is defined as xy^{-1} = x / y .
同余模于n(congruence modulo n)
两个整数 x 和 y 同余模于n,就是说n可以被x-y的差整除。记做:x \equiv y (mod n).
循环环Z_n (The cyclic ring Z_n)
Z_n is a set of equivalence classes of integers under the equivalence relation which is congruence modulo n.
有两种理解方式:
A: 认为Z_n的元素是 0 到 n-1,任何操作的结果,需要对n求余,匹配到0到n-1这个范围。
Z_6 = {0, 1, 2, 3, 4, 5}。
x + yi \text{ where } x, y \in \mathbb{Z}是一个整环(Integral Domain)。
艾森斯坦整数(Eisenstein Integers), Z[i]
x + y \omega \text{ where } \omega = \frac{1}{2} ( -1 + i \sqrt{3}) = e^{2\pi i/3}是一个整环(Integral Domain)。
布尔环
将逻辑理论带入代数环理论中:
1 = true \\ 0 = false \\ xy = P \land Q \\ x + y = P \oplus Q \\ x + y + xy = P \lor Q \\ 1 + x = \lnot P
Boolean Rings
An element e of a ring is said to be idempotent which \(e^2 = e\). If every element in a ring is idempotent, then the ring is called a Boolean ring.
我的理解是:布尔环的每个元素的值要么是0(false),要么是1(true)。因为只有0和1的平方才等于自身(幂等)。
当然,在一个布尔环中允许0和1以外的元素存在,这些元素对应逻辑理论中的命题(proposition),命题常量,或者也可以是谓词(predicate)等。
核(Kernels),理想(ideal)和商环(quotient rings)
环同态的核(Kernels of ring homomorphisms)
在一个同态映射中,值域(codomain)是0的域(domain)元素集合。
Let f : R \to S be a ring homomorphism. Those elements of R that are sent to 0 in S form the kernel of f.
Ker \ f = f^{-1}(0) = {x \in R | f(x) = 0}
环的理想(ideal of a ring)
一个环R的理想I:
1) includes 0
2) 对加法具有封闭性。
3) 与R中任何元素的乘积结果具有在理想I中的封闭性。
0 \in I, I + I \subseteq I, IR \subseteq I, RI \subseteq I
{0} is always an ideal in a ring R. It's called the trivial ideal.
A proper ideal is an ideal I \neq R
Principle ideals
$$
(a) = {xa | x \in R} \
where
\text{a is an element of a commutative ring R.}
$$
{0} = (0)
R = (1)
商环(Quotient rings R/\equiv, R/I)
环的的同余(congruence \(\equiv\))关系。
The congruence on a ring R is an equivalence relation such that for all x, x', y, y' \in R,
x \equiv x' \ and \ y \equiv y' \ imply \ x + y \equiv x' + y' \ and \ xy \equiv x'y'
x and x' is called congruence classes.
定理:理想的同余模(Congruence modulo an ideal)
Let I be an ideal of a ring R, A congruence, call congruence module I, is defined by
x \equiv y (mod I) if and only if x - y \in I
THe quotient ring, R/\equiv, is denoted R/I.
群(Group)
群(Group)
一个群由一个集合和对应的操作组成。具有以下性质:
有一个二元操作:addition or multiplication。(具有封闭性。)
the binary operation 具有 associativity。
the binary operation 的 identity element是0 or 1,
每个元素都有反元素。
非正式的说,群具有加减两个操作,或者乘除两个操作。
子群(subgroup)
子群H是群G的子集,并且满足:
有1,
乘法具有封闭性
反元素具有封闭性
循环群(cyclic groups and subgroups)
A group or a subgroup is generated by some element a:
\left \langle a \right \rangle = {a^n | n \in \mathbb{z}}
阶(the order of a group)
一个群的阶就是它元素的数量,表示为|G|。
一个群元素 a 的阶是天河最小正整数n,使得a^n = 1。
Involution
An involution a is an element of a group which is its own inverse, a^{-1} = a。
协作集合(coset)
Let H be a subgroup of G, A left coset a set of the form
aH = {ah | h \in H}
while a right coset is of the form Ha = {ha | h \in H}.
算术概念
单位根(root of unity)
一个复数,在正整数次方后的结果是1。
n的基本单位根(primitive nth root of unity)
对于等式z^n = 1,使z的正整数次方等于1的最小整数n,则z为n^{th} primitive root of unity。
\phi(n)的n的基本单位根的个数。
分圆多项式(Cyclotomic polynomial)
n的基本单位根的求解多项式。
The polynomial \Phi_n(z) = \prod_{k=1}^{\phi(n)}(z - z_k), where z_1, z_2, \dots, z_{\phi(n)} are the primitive n^{th} roots of unity, is called the n^{th} cyclotomic polynomial.
自反性 - Law of Reflexivity: Everything is equal to itself
x = x.
对称性 - Law of Symmetry
If x = y, then y = x.
传递性 - Law of Transitivity
If x = y and y = z, then x = z
命题(Proposition)
谓词(Predicate)
a predicate is a statement that may be true or false depending on the values of its variables.
P(x) is referred to as the predicate, and x the subject of the proposition. Sometimes, P(x) is also called a propositional function