前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Caffe2 - (二十七) Detectron 之 modeling - detector

Caffe2 - (二十七) Detectron 之 modeling - detector

作者头像
AIHGF
发布2018-05-17 10:16:56
1.3K0
发布2018-05-17 10:16:56
举报
文章被收录于专栏:AIUAI

Caffe2 - (二十七) Detectron 之 modeling - detector

Detecton 定义了一个 DetectionModelHelper 类,来表示 Detectron 模型.

代码语言:javascript
复制
"""
Defines DetectionModelHelper, 
the class that represents a Detectron model.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import logging

from caffe2.python import cnn
from caffe2.python import core
from caffe2.python import workspace

from core.config import cfg
# 定制的 Python Ops
from ops.collect_and_distribute_fpn_rpn_proposals import CollectAndDistributeFpnRpnProposalsOp
from ops.generate_proposal_labels import GenerateProposalLabelsOp
from ops.generate_proposals import GenerateProposalsOp
# lr 策略
from utils import lr_policy
import roi_data.fast_rcnn
import utils.c2 as c2_utils

logger = logging.getLogger(__name__)


class DetectionModelHelper(cnn.CNNModelHelper): # 父类 - cnn.CNNModelHelper
    def __init__(self, **kwargs):
        # DetectionModelHelper 的参数处理,其它的参数送入 cnn.CNNModelHelper
        self.train = kwargs.get('train', False)
        self.num_classes = kwargs.get('num_classes', -1)
        assert self.num_classes > 0, 'num_classes must be > 0'
        for k in ('train', 'num_classes'):
            if k in kwargs:
                del kwargs[k]
        kwargs['order'] = 'NCHW'
        # 安全性起见,设置 cudnn_exhaustive_search 为 False,以免 CNNModelHelper 默认值出现改变.
        # detection 代码使用可变尺寸输入(variable size inputs), 
        # cudnn_exhaustive_search 为 True时,可能不太友好.
        kwargs['cudnn_exhaustive_search'] = False
        super(DetectionModelHelper, self).__init__(**kwargs)
        self.roi_data_loader = None
        self.losses = []
        self.metrics = []
        self.do_not_update_params = []  # 不进行更新的参数列表,此列表内的参数不进行更新
        self.net.Proto().type = cfg.MODEL.EXECUTION_TYPE # dag
        self.net.Proto().num_workers = cfg.NUM_GPUS * 4 # 每个 GPU, 4 个worker
        self.prev_use_cudnn = self.use_cudnn

    def TrainableParams(self, gpu_id=-1):
        """
        所有训练参数的 blobs names,可能根据 GPU id 来过滤.
        """
        return [p for p in self.params if (p in self.param_to_grad and   # p has a gradient
                                           p not in self.do_not_update_params and  # not on the blacklist
                                           (gpu_id == -1 or  # filter for gpu assignment, if gpu_id set
                                            str(p).find('gpu_{}'.format(gpu_id)) == 0) )]

    def AffineChannel(self, blob_in, blob_out, share_with=None, inplace=False):
        """
        仿射变换(affine transformation),替代网络中的 BN,是 BN 层不被使用.
        (e.g., 因为 minibatch 太小).

        通过指定 share_with 参数中 blob name(排除 '_{s,b}' 后缀),
        可以将 AffineChannel 参数与其它 AffineChannelOp 共享.
        用于减少内存.
        """
        blob_out = blob_out or self.net.NextName()
        is_not_sharing = share_with is None
        param_prefix = blob_out if is_not_sharing else share_with
        scale = core.ScopedBlobReference(param_prefix + '_s', self.param_init_net)
        bias = core.ScopedBlobReference(param_prefix + '_b', self.param_init_net)
        if is_not_sharing:
            self.net.Proto().external_input.extend([str(scale), str(bias)])
            self.params.extend([scale, bias])
            self.weights.append(scale)
            self.biases.append(bias)
        if inplace:
            return self.net.AffineChannel([blob_in, scale, bias], blob_in)
        else:
            return self.net.AffineChannel([blob_in, scale, bias], blob_out)

    def GenerateProposals(self, blobs_in, blobs_out, anchors, spatial_scale):
        """
        Python Op - 生成 RPN proposals.
        - 输入 blobs_in:
            - rpn_cls_probs: 4D tensor, shape (N, A, H, W)
                其中, N - minibatch images 数
                    A - 每个位置(per locations)的 anchors 数
                    (H, W) - 预测网格(grid) 的空间尺寸
                每个值表示一个物体的概率(probability of object), [0, 1]
            - rpn_cls_pred: 4D tensor, shape (N, 4*A, H, W)
                将 anchor boxes 变换为 RPN proposals 的预测的 deltas 值.
            - im_info: 2D tensor, shape (N, 3)
                其中,3 列值分别是输入图片的 [height, width, scale].
                height 和 width 是网络的输入.
                scale 是将原始图片缩放到网络输入尺寸的缩放因子 scale factor.

        - 输出 blobs_out:
            - rpn_rois: 2D tensor, shape (R, 5)
                对于 R 个 PRN proposals, 5 列值分别为 [batch ind, x1, y1, x2, y2].
                boxes 是关于网络输入尺寸的,即:原始图片的 scaled 版本.
                这些 proposals 必须缩放scaled: 1/scale (其中,scale 来自 im_info) 以变换到原始输入图片的坐标系.
            - rpn_rois_probs: 1D tensor, objectness 概率分数(probability scores). (从 rpn_cls_probs 提取得到.)
        """
        name = 'GenerateProposalsOp:' + ','.join([str(b) for b in blobs_in])
        self.net.Python(GenerateProposalsOp(anchors, spatial_scale, self.train).forward)(blobs_in, blobs_out, name=name)
        # Caffe2 提供了 high-level 接口,用于 Python ops 创建 —— Net.Python() 接口.
        return blobs_out

    def GenerateProposalLabels(self, blobs_in):
        """
        Python Op - 生成 RPN proposals 的训练 labels.
                  - 用于与 Fast/Mask R-CNN 联合训练时的 RPN 训练(如end-to-end Faster R-CNN 训练)

        - 输入blobs - blobs_in:
            - rpn_rois: GenerateProposals 输出的 RPN proposals,2D tensor.
            - roidb: 待 labeled 的 roidb entries.
            - im_info: 参考 GenerateProposals 文档.

        - 输出blobs - blobs_out:
            - (blobs 的 variable set): 返回模型训练需要的 blobs.
             通过查询 data loader 来返回需要的 blobs 列表list.
        """
        name = 'GenerateProposalLabelsOp:' + ','.join([str(b) for b in blobs_in])

        # 在运行前,blobs 列表是未知的,因为其由训练的指定模型来确定.
        # 查询 data loader 以得到输出 blobs names 的列表.
        blobs_out = roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=self.train)
        blobs_out = [core.ScopedBlobReference(b) for b in blobs_out]

        self.net.Python(GenerateProposalLabelsOp().forward)(blobs_in, blobs_out, name=name)
        return blobs_out

    def CollectAndDistributeFpnRpnProposals(self):
        """
        Python Op - 将 multiple FPN levels 生成的 RPN proposals 进行合并,
                    并分发 FPN proposals 到对应的 FPN levels.
                  - 一个 FPN level 的 anchor 预测的一个 RoI 可能映射到另一个 FPN level,
                    因此需要重新分发 FPN proposals.

        - Input Blobs:
            - [rpn_rois_fpn<min>, ..., rpn_rois_fpn<max>, 
               rpn_roi_probs_fpn<min>, ..., rpn_roi_probs_fpn<max>]
              其中,
              rpn_rois_fpn<i> - FPN level i 的 RPN proposals.
              rpn_roi_probs_fpn<i>` - FPN level i 的 RPN objectness 概率.

              训练阶段使用时,Input Blobs 还包括:[roidb, im_info].

        - Output blobs:
            - [rois_fpn<min>, ..., rois_rpn<max>, rois, rois_idx_restore]
            其中,
            rois_fpn<i> - FPN level i 的 RPN proposals.
            rois_idx_restore - 所有 rois_fpn<i>, i=min...max 组合的排列序列,
                              用于将 RPN RoIs 恢复到 Input Blobs 原来的顺序.

            训练阶段使用时,Output Blobs 还包括: [labels, bbox_targets, bbox_inside_weights, bbox_outside_weights].
        """

        k_max = cfg.FPN.RPN_MAX_LEVEL
        k_min = cfg.FPN.RPN_MIN_LEVEL

        # 准备 input blobs
        rois_names = ['rpn_rois_fpn' + str(l) for l in range(k_min, k_max + 1)]
        score_names = ['rpn_roi_probs_fpn' + str(l) for l in range(k_min, k_max + 1)]
        blobs_in = rois_names + score_names
        if self.train:
            blobs_in += ['roidb', 'im_info']
        blobs_in = [core.ScopedBlobReference(b) for b in blobs_in]
        name = 'CollectAndDistributeFpnRpnProposalsOp:' + ','.join([str(b) for b in blobs_in])

        # 准备 output blobs
        blobs_out = roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=self.train)
        blobs_out = [core.ScopedBlobReference(b) for b in blobs_out]

        outputs = self.net.Python(CollectAndDistributeFpnRpnProposalsOp(self.train).forward)(blobs_in, blobs_out, name=name)

        return outputs

    def DropoutIfTraining(self, blob_in, dropout_rate):
        """
        如果 model 处于训练模式,则添加 dropout,且 dropout_rate > 0.
        """
        blob_out = blob_in
        if self.train and dropout_rate > 0:
            blob_out = self.Dropout(blob_in, blob_in, ratio=dropout_rate, is_test=False)
        return blob_out

    def RoIFeatureTransform(self, blobs_in, blob_out, blob_rois='rois', method='RoIPoolF',
                            resolution=7, spatial_scale=1. / 16., sampling_ratio=0):
        """
        添加指定的 RoI Pooling 方法.
        一些 RoI 变换方法支持 sampling_ratio 参数,有一些则不支持.

        RoIFeatureTransform abstracts away:
          - Use of FPN or not
          - Specifics of the transform method
        """
        assert method in {'RoIPoolF', 'RoIAlign'}, 'Unknown pooling method: {}'.format(method)
        has_argmax = (method == 'RoIPoolF')
        if isinstance(blobs_in, list):
            # FPN case: add RoIFeatureTransform to each FPN level
            k_max = cfg.FPN.ROI_MAX_LEVEL  # coarsest level of pyramid
            k_min = cfg.FPN.ROI_MIN_LEVEL  # finest level of pyramid
            assert len(blobs_in) == k_max - k_min + 1
            bl_out_list = []
            for lvl in range(k_min, k_max + 1):
                bl_in = blobs_in[k_max - lvl]  # blobs_in is in reversed order 倒序
                sc = spatial_scale[k_max - lvl]  # in reversed order
                bl_rois = blob_rois + '_fpn' + str(lvl)
                bl_out = blob_out + '_fpn' + str(lvl)
                bl_out_list.append(bl_out)
                bl_argmax = ['_argmax_' + bl_out] if has_argmax else []
                self.net.__getattr__(method)([bl_in, bl_rois], 
                                             [bl_out] + bl_argmax,
                                             pooled_w=resolution,
                                             pooled_h=resolution,
                                             spatial_scale=sc,
                                             sampling_ratio=sampling_ratio)
            # 所有 levels 的 pooled features 沿着 batch dimension 连接为单个 4D tensor. 
            xform_shuffled, _ = self.net.Concat(bl_out_list, 
                                                [blob_out + '_shuffled', '_concat_' + blob_out],
                                                axis=0 )
            # Unshuffle to match rois from dataloader
            restore_bl = blob_rois + '_idx_restore_int32'
            xform_out = self.net.BatchPermutation([xform_shuffled, restore_bl], blob_out )
        else:
            # 单个 feature level
            bl_argmax = ['_argmax_' + blob_out] if has_argmax else []
            # RoIPoolF 忽略 sampling_ratio
            xform_out = self.net.__getattr__(method)([blobs_in, blob_rois], 
                                                     [blob_out] + bl_argmax,
                                                     pooled_w=resolution,
                                                     pooled_h=resolution,
                                                     spatial_scale=spatial_scale,
                                                     sampling_ratio=sampling_ratio )
        # 只返回第一个 blob (transformed features)
        return xform_out

    def ConvShared(self, blob_in, blob_out, dim_in, dim_out, kernel, weight=None, bias=None, **kwargs):
        """
        添加 conv op,与其它 conv op 共享 weights 和 biases.
        """
        use_bias = ( False if ('no_bias' in kwargs and kwargs['no_bias']) else True )

        if self.use_cudnn:
            kwargs['engine'] = 'CUDNN'
            kwargs['exhaustive_search'] = self.cudnn_exhaustive_search
            if self.ws_nbytes_limit:
                kwargs['ws_nbytes_limit'] = self.ws_nbytes_limit

        if use_bias:
            blobs_in = [blob_in, weight, bias]
        else:
            blobs_in = [blob_in, weight]

        if 'no_bias' in kwargs:
            del kwargs['no_bias']

        return self.net.Conv(blobs_in, blob_out, kernel=kernel, order=self.order, **kwargs )

    def BilinearInterpolation(self, blob_in, blob_out, dim_in, dim_out, up_scale ):
        """
        在尺度空间(space of scale) 双线性插值(bilinear interpolation).

        如果输入:NxKxHxW, 则输出:NxKx(sH)x(sW), 其中 s:= up_scale

        From the CVPR'15 FCN code.
        参见: https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/surgery.py
        """
        assert dim_in == dim_out
        assert up_scale % 2 == 0, 'Scale should be even'

        def upsample_filt(size):
            """
            Make a 2D bilinear kernel suitable for upsampling of the given (h, w) size.
            """
            factor = (size + 1) // 2
            if size % 2 == 1:
                center = factor - 1
            else:
                center = factor - 0.5
            og = np.ogrid[:size, :size]
            return ((1 - abs(og[0] - center) / factor) *
                    (1 - abs(og[1] - center) / factor))

        kernel_size = up_scale * 2
        bil_filt = upsample_filt(kernel_size)

        kernel = np.zeros((dim_in, dim_out, kernel_size, kernel_size), dtype=np.float32)
        kernel[range(dim_out), range(dim_in), :, :] = bil_filt

        blob = self.ConvTranspose(blob_in, blob_out, dim_in, dim_out, kernel_size,
                                  stride=int(up_scale), pad=int(up_scale / 2),
                                  weight_init=('GivenTensorFill', {'values': kernel}),
                                  bias_init=('ConstantFill', {'value': 0.}) )
        self.do_not_update_params.append(self.weights[-1])
        self.do_not_update_params.append(self.biases[-1])
        return blob

    def ConvAffine(self, blob_in, prefix, dim_in, dim_out, kernel, stride, pad,
                   group=1, dilation=1, weight_init=None, bias_init=None,
                   suffix='_bn', inplace=False ): # 参数顺序与 Conv() 相同
        """
        ConvAffine 添加一个 Conv Op,其后接一个 AffineChannels Op (fine tuning 时代替 BN).
        """
        conv_blob = self.Conv(blob_in, prefix, dim_in, dim_out, kernel, stride=stride,
                              pad=pad, group=group, dilation=dilation,
                              weight_init=weight_init, bias_init=bias_init, no_bias=1)
        blob_out = self.AffineChannel(conv_blob, prefix + suffix, inplace=inplace)
        return blob_out

    def DisableCudnn(self):
        self.prev_use_cudnn = self.use_cudnn
        self.use_cudnn = False

    def RestorePreviousUseCudnn(self):
        prev_use_cudnn = self.use_cudnn
        self.use_cudnn = self.prev_use_cudnn
        self.prev_use_cudnn = prev_use_cudnn

    def UpdateWorkspaceLr(self, cur_iter):
        """
        更新模型的当前学习率和 workspace(learning rate and update history/momentum blobs).
        """
        # lr 位于 workspace 中
        # 所有 GPUs 的 lr 一般相同.
        cur_lr = workspace.FetchBlob('gpu_0/lr')[0]
        new_lr = lr_policy.get_lr_at_iter(cur_iter)
        # Python lr 和 GPU lr 不需要数据类型转换,都是 float32
        # 因此,可以直接精确比较.l
        if cur_lr != new_lr:
            ratio = _get_lr_change_ratio(cur_lr, new_lr)
            if ratio > cfg.SOLVER.LOG_LR_CHANGE_THRESHOLD:
                logger.info('Changing learning rate {:.6f} -> {:.6f} at iter {:d}'.
                            format(cur_lr, new_lr, cur_iter))
            self._SetNewLr(cur_lr, new_lr)
        return new_lr

    def _SetNewLr(self, cur_lr, new_lr):
        """
        模型和 workspace blobs 实际在这里更新.
        """
        for i in range(cfg.NUM_GPUS):
            with c2_utils.CudaScope(i):
                workspace.FeedBlob('gpu_{}/lr'.format(i), np.array([new_lr], dtype=np.float32))
        ratio = _get_lr_change_ratio(cur_lr, new_lr)
        if cfg.SOLVER.SCALE_MOMENTUM and cur_lr > 1e-7 and \
                ratio > cfg.SOLVER.SCALE_MOMENTUM_THRESHOLD:
            self._CorrectMomentum(new_lr / cur_lr)

    def _CorrectMomentum(self, correction):
        """
        MomentumSGDUpdate Op 实现的对 V 的更新方式:
            V := mu * V + lr * grad,

        其中,mu 是 momentum 因子
             lr 是 学习率
             grad 是随机梯度stochastic gradient
        由于 V 不是独立于学习率 lr 定义的(虽然理想情况下应该是独立的),
        当 lr 改变时,更新历史 V 也应该改变,以保持与  lr * grad 的尺度scale一致.
        """
        logger.info('Scaling update history by {:.6f} (new lr / old lr)'.format(correction))
        for i in range(cfg.NUM_GPUS):
            with c2_utils.CudaScope(i):
                for param in self.TrainableParams(gpu_id=i):
                    op = core.CreateOperator('Scale', [param + '_momentum'], [param + '_momentum'],
                                             scale=correction)
                    workspace.RunOperatorOnce(op)

    def AddLosses(self, losses):
        if not isinstance(losses, list):
            losses = [losses]
        # Conversion to str allows losses to include BlobReferences
        losses = [c2_utils.UnscopeName(str(l)) for l in losses]
        self.losses = list(set(self.losses + losses))

    def AddMetrics(self, metrics):
        if not isinstance(metrics, list):
            metrics = [metrics]
        self.metrics = list(set(self.metrics + metrics))


def _get_lr_change_ratio(cur_lr, new_lr):
    eps = 1e-10
    ratio = np.max((new_lr / np.max((cur_lr, eps)),
                    cur_lr / np.max((new_lr, eps))) )
    return ratio
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018年04月04日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Caffe2 - (二十七) Detectron 之 modeling - detector
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档