前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >5种主要聚类算法的简单介绍

5种主要聚类算法的简单介绍

作者头像
AiTechYun
发布2018-03-27 15:26:09
1.4K0
发布2018-03-27 15:26:09
举报
文章被收录于专栏:ATYUN订阅号

AiTechYun

编辑:Yining

聚类是一种机器学习技术,它涉及到数据点的分组。给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。理论上,同一组中的数据点应该具有相似的属性和/或特征,而不同组中的数据点应该具有高度不同的属性和/或特征。聚类是一种无监督学习的方法,是许多领域中常用的统计数据分析技术。

在数据科学中,我们可以使用聚类分析从我们的数据中获得一些有价值的见解。在这篇文章中,我们将研究5种流行的聚类算法以及它们的优缺点。

K-MEANS聚类算法 K-Means聚类算法可能是大家最熟悉的聚类算法。它出现在很多介绍性的数据科学和机器学习课程中。在代码中很容易理解和实现!请看下面的图表。

K-Means聚类

1.首先,我们选择一些类/组来使用并随机地初始化它们各自的中心点。要想知道要使用的类的数量,最好快速地查看一下数据,并尝试识别任何不同的分组。中心点是与每个数据点向量相同长度的向量,在上面的图形中是“X”。

2.每个数据点通过计算点和每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。

3.基于这些分类点,我们通过取组中所有向量的均值来重新计算组中心。

4.对一组迭代重复这些步骤。你还可以选择随机初始化组中心几次,然后选择那些看起来对它提供了最好结果的来运行。

K-Means聚类算法的优势在于它的速度非常快,因为我们所做的只是计算点和群中心之间的距离;它有一个线性复杂度O(n)。

另一方面,K-Means也有几个缺点。首先,你必须选择有多少组/类。这并不是不重要的事,理想情况下,我们希望它能帮我们解决这些问题,因为它的关键在于从数据中获得一些启示。K-Means也从随机选择的聚类中心开始,因此在不同的算法运行中可能产生不同的聚类结果。因此,结果可能是不可重复的,并且缺乏一致性。其他聚类方法更加一致。

K-Medians是另一种与K-Means有关的聚类算法,除了使用均值的中间值来重新计算组中心点以外,这种方法对离群值的敏感度较低(因为使用中值),但对于较大的数据集来说,它要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。

均值偏移聚类算法 均值偏移(Mean shift)聚类算法是一种基于滑动窗口(sliding-window)的算法,它试图找到密集的数据点。而且,它还是一种基于中心的算法,它的目标是定位每一组群/类的中心点,通过更新中心点的候选点来实现滑动窗口中的点的平均值。这些候选窗口在后期处理阶段被过滤,以消除几乎重复的部分,形成最后一组中心点及其对应的组。请看下面的图表。

单滑动窗口的均值偏移聚类

1.为了解释这一变化,我们将考虑二维空间中的一组点(就像上面的例子)。我们从一个以点C(随机选择)为中心的圆形滑窗开始,以半径r为内核。均值偏移是一种爬山算法(hill climbing algorithm),它需要在每个步骤中反复地将这个内核移动到一个更高的密度区域,直到收敛。

2.在每一次迭代中,滑动窗口会移向密度较高的区域,将中心点移动到窗口内的点的平均值(因此得名)。滑动窗口中的密度与它内部的点的数量成比例。自然地,通过移向窗口中点的平均值,它将逐渐向更高的点密度方向移动。

3.我们继续根据均值移动滑动窗口,直到没有方向移动可以容纳内核中的更多点。看看上面的图表;我们一直在移动这个圆,直到我们不再增加密度(也就是窗口中的点数)。

4.步骤1到3的过程是用许多滑动窗口完成的,直到所有的点都位于一个窗口内。当多个滑动窗口重叠的时候,包含最多点的窗口会被保留。然后,数据点根据它们所在的滑动窗口聚类。

下面展示了从端到端所有滑动窗口的整个过程的演示。每个黑点代表一个滑动窗口的质心,每个灰色点都是一个数据点。

均值偏移聚类的整个过程

与K-Means聚类相比,均值偏移不需要选择聚类的数量,因为它会自动地发现这一点。这是一个巨大的优势。聚类中心收敛于最大密度点的事实也是非常可取的,因为它非常直观地理解并适合于一种自然数据驱动。缺点是选择窗口大小/半径r是非常关键的,所以不能疏忽。

DBSCAN聚类算法 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法,类似于均值转移聚类算法,但它有几个显著的优点。

DBSCAN笑脸聚类

1.DBSCAN以一个从未访问过的任意起始数据点开始。这个点的邻域是用距离ε(所有在ε距离的点都是邻点)来提取的。

2.如果在这个邻域中有足够数量的点(根据 minPoints),那么聚类过程就开始了,并且当前的数据点成为新聚类中的第一个点。否则,该点将被标记为噪声(稍后这个噪声点可能会成为聚类的一部分)。在这两种情况下,这一点都被标记为“访问(visited)”。

3.对于新聚类中的第一个点,其ε距离附近的点也会成为同一聚类的一部分。这一过程使在ε邻近的所有点都属于同一个聚类,然后重复所有刚刚添加到聚类组的新点。

4.步骤2和步骤3的过程将重复,直到聚类中的所有点都被确定,就是说在聚类附近的所有点都已被访问和标记。

5.一旦我们完成了当前的聚类,就会检索并处理一个新的未访问点,这将导致进一步的聚类或噪声的发现。这个过程不断地重复,直到所有的点被标记为访问。因为在所有的点都被访问过之后,每一个点都被标记为属于一个聚类或者是噪音。

DBSCAN比其他聚类算法有一些优势。首先,它不需要一个预设定的聚类数量。它还将异常值识别为噪声,而不像均值偏移聚类算法,即使数据点非常不同,它也会将它们放入一个聚类中。此外,它还能很好地找到任意大小和任意形状的聚类。

DBSCAN的主要缺点是,当聚类具有不同的密度时,它的性能不像其他聚类算法那样好。这是因为当密度变化时,距离阈值ε和识别邻近点的minPoints的设置会随着聚类的不同而变化。这种缺点也会出现在非常高维的数据中,因为距离阈值ε变得难以估计。

使用高斯混合模型(GMM)的期望最大化(EM)聚类 K-Means的一个主要缺点是它对聚类中心的平均值的使用很简单幼稚。我们可以通过看下面的图片来了解为什么这不是最好的方法。在左边看起来很明显的是,有两个圆形的聚类,不同的半径以相同的平均值为中心。K-Means无法处理,因为聚类的均值非常接近。在聚类不是循环的情况下,K-Means也会失败,这也是使用均值作为聚类中心的结果。

K-Means的两个失败案例

高斯混合模型(GMMs)比K-Means更具灵活性。使用高斯混合模型,我们可以假设数据点是高斯分布的;比起说它们是循环的,这是一个不那么严格的假设。这样,我们就有两个参数来描述聚类的形状:平均值和标准差!以二维的例子为例,这意味着聚类可以采用任何形式的椭圆形状(因为在x和y方向上都有标准差)。因此,每个高斯分布可归属于一个单独的聚类。

为了找到每个聚类的高斯分布的参数(例如平均值和标准差)我们将使用一种叫做期望最大化(EM)的优化算法。看看下面的图表,就可以看到高斯混合模型是被拟合到聚类上的。然后,我们可以继续进行期望的过程——使用高斯混合模型实现最大化聚类。

使用高斯混合模型来期望最大化聚类

1.我们首先选择聚类的数量(如K-Means所做的那样),然后随机初始化每个聚类的高斯分布参数。通过快速查看数据,可以尝试为初始参数提供良好的猜测。注意,在上面的图表中可以看到,这并不是100%的必要,因为高斯开始时的表现非常不好,但是很快就被优化了。

2.给定每个聚类的高斯分布,计算每个数据点属于特定聚类的概率。一个点离高斯中心越近,它就越有可能属于那个聚类。这应该是很直观的,因为有一个高斯分布,我们假设大部分的数据都离聚类中心很近。

3.基于这些概率,我们为高斯分布计算一组新的参数,这样我们就能最大程度地利用聚类中的数据点的概率。我们使用数据点位置的加权和来计算这些新参数,权重是属于该特定聚类的数据点的概率。为了解释这一点,我们可以看一下上面的图,特别是黄色的聚类作为例子。分布在第一次迭代中是随机的,但是我们可以看到大多数的黄色点都在这个分布的右边。当我们计算一个由概率加权的和,即使在中心附近有一些点,它们中的大部分都在右边。因此,自然分布的均值更接近于这些点。我们还可以看到,大多数点都是“从右上角到左下角”。因此,标准差的变化是为了创造一个更符合这些点的椭圆,从而使概率的总和最大化。

步骤2和3被迭代地重复,直到收敛,在那里,分布不会从迭代到迭代这个过程中变化很多。

使用高斯混合模型有两个关键的优势。首先,高斯混合模型在聚类协方差方面比K-Means要灵活得多;根据标准差参数,聚类可以采用任何椭圆形状,而不是局限于圆形。K-Means实际上是高斯混合模型的一个特例,每个聚类在所有维度上的协方差都接近0。其次,根据高斯混合模型的使用概率,每个数据点可以有多个聚类。因此,如果一个数据点位于两个重叠的聚类的中间,通过说X%属于1类,而y%属于2类,我们可以简单地定义它的类。

层次聚类算法 层次聚类算法实际上分为两类:自上而下或自下而上。自下而上的算法在一开始就将每个数据点视为一个单一的聚类,然后依次合并(或聚集)类,直到所有类合并成一个包含所有数据点的单一聚类。因此,自下而上的层次聚类称为合成聚类或HAC。聚类的层次结构用一棵树(或树状图)表示。树的根是收集所有样本的唯一聚类,而叶子是只有一个样本的聚类。在继续学习算法步骤之前,先查看下面的图表。

合成聚类

1.我们首先将每个数据点作为一个单独的聚类进行处理。如果我们的数据集有X个数据点,那么我们就有了X个聚类。然后我们选择一个度量两个聚类之间距离的距离度量。作为一个示例,我们将使用平均连接(average linkage)聚类,它定义了两个聚类之间的距离,即第一个聚类中的数据点和第二个聚类中的数据点之间的平均距离。

2.在每次迭代中,我们将两个聚类合并为一个。将两个聚类合并为具有最小平均连接的组。比如说根据我们选择的距离度量,这两个聚类之间的距离最小,因此是最相似的,应该组合在一起。

3.重复步骤2直到我们到达树的根。我们只有一个包含所有数据点的聚类。通过这种方式,我们可以选择最终需要多少个聚类,只需选择何时停止合并聚类,也就是我们停止建造这棵树的时候!

层次聚类算法不要求我们指定聚类的数量,我们甚至可以选择哪个聚类看起来最好。此外,该算法对距离度量的选择不敏感;

它们的工作方式都很好,而对于其他聚类算法,距离度量的选择是至关重要的。层次聚类方法的一个特别好的用例是,当底层数据具有层次结构时,你可以恢复层次结构;而其他的聚类算法无法做到这一点。层次聚类的优点是以低效率为代价的,因为它具有O(n³)的时间复杂度,与K-Means和高斯混合模型的线性复杂度不同。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-03-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 ATYUN订阅号 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档