前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >mxnet框架样本,使用C++接口

mxnet框架样本,使用C++接口

作者头像
Gxjun
发布2018-03-27 11:38:37
1.9K0
发布2018-03-27 11:38:37
举报
文章被收录于专栏:ml

哇塞,好久么有跟进mxnet啦,python改版了好多好多啊,突然发现C++用起来才是最爽的. 贴一个mxnet中的C++Example中的mlp网络和实现,感觉和python对接毫无违和感。真是一级棒呐.

代码语言:javascript
复制
//
// Created by xijun1 on 2017/12/8.
//

#include <iostream>
#include <vector>
#include <string>
#include <mxnet/mxnet-cpp/MxNetCpp.h>
#include <mxnet/mxnet-cpp/op.h>

namespace mlp{

    template < typename T , typename U >
    class MLP{
    public:
        static mx_float OutputAccuracy(mx_float* pred, mx_float* target) {
            int right = 0;
            for (int i = 0; i < 128; ++i) {
                float mx_p = pred[i * 10 + 0];
                float p_y = 0;
                for (int j = 0; j < 10; ++j) {
                    if (pred[i * 10 + j] > mx_p) {
                        mx_p = pred[i * 10 + j];
                        p_y = j;
                    }
                }
                if (p_y == target[i]) right++;
            }
            return right / 128.0;
        }
        static bool train(T x , U y);
        static bool predict(T x);
        static  bool net() {
            using mxnet::cpp::Symbol;
            using mxnet::cpp::NDArray;

            Symbol x = Symbol::Variable("X");
            Symbol y = Symbol::Variable("label");

            std::vector<std::int32_t> shapes({512 , 10});
            //定义一个两层的网络. wx + b
            Symbol weight_0 = Symbol::Variable("weight_0");
            Symbol biases_0 = Symbol::Variable("biases_0");

            Symbol fc_0 = mxnet::cpp::FullyConnected("fc_0",x,weight_0,biases_0
                    ,512);

            Symbol output_0 = mxnet::cpp::LeakyReLU("relu_0",fc_0,mxnet::cpp::LeakyReLUActType::kLeaky);

            Symbol weight_1 = Symbol::Variable("weight_1");
            Symbol biases_1 = Symbol::Variable("biases_1");
            Symbol fc_1 = mxnet::cpp::FullyConnected("fc_1",output_0,weight_1,biases_1,10);
            Symbol output_1 = mxnet::cpp::LeakyReLU("relu_1",fc_1,mxnet::cpp::LeakyReLUActType::kLeaky);
            Symbol pred = mxnet::cpp::SoftmaxOutput("softmax",output_1,y);  //目标函数,loss函数

            //定义使用计算驱动
            mxnet::cpp::Context ctx = mxnet::cpp::Context::cpu( 0);
            NDArray arr_x(mxnet::cpp::Shape( 128 , 28 ) , ctx , false);
            NDArray arr_y(mxnet::cpp::Shape(128) , ctx , false );

            //定义输入数据
            std::shared_ptr< mx_float > aptr_x(new mx_float[128*28] , [](mx_float* aptr_x){ delete [] aptr_x ;});
            std::shared_ptr< mx_float > aptr_y(new mx_float[128] , [](mx_float * aptr_y){ delete [] aptr_y ;});

            //初始化数据
            for(int i=0 ; i<128 ; i++){
                for(int j=0;j<28 ; j++){
                    //定义x
                    aptr_x.get()[i*28+j]= i % 10 +0.1f;
                }

                //定义y
                aptr_y.get()[i]= i % 10;
            }

            //将数据转换到NDArray中
            arr_x.SyncCopyFromCPU(aptr_x.get(),128*28);
            arr_x.WaitToRead();

            arr_y.SyncCopyFromCPU(aptr_y.get(),128);
            arr_y.WaitToRead();

            //定义各个层参数的数组
            NDArray arr_w_0(mxnet::cpp::Shape(512,28),ctx, false);
            NDArray arr_b_0(mxnet::cpp::Shape( 512 ),ctx,false);
            NDArray arr_w_1(mxnet::cpp::Shape(10 , 512 ) , ctx , false);
            NDArray arr_b_1(mxnet::cpp::Shape( 10 ) , ctx , false);

            //初始化权重参数
            arr_w_0 = 0.01f;
            arr_b_1 = 0.01f;
            arr_w_1 = 0.01f;
            arr_b_1 = 0.01f;

            //求解梯度

            NDArray arr_w_0_g(mxnet::cpp::Shape( 512 , 28 ),ctx, false);
            NDArray arr_b_0_g(mxnet::cpp::Shape( 512 ) , ctx , false);
            NDArray arr_w_1_g(mxnet::cpp::Shape( 10 , 512 ) , ctx , false);
            NDArray arr_b_1_g(mxnet::cpp::Shape( 10 ) , ctx , false);

            //将数据绑定到网络图中.

            //输入数据参数
            std::vector< NDArray > bind_data;
            bind_data.push_back( arr_x );
            bind_data.push_back( arr_w_0 );
            bind_data.push_back( arr_b_0 );
            bind_data.push_back( arr_w_1 );
            bind_data.push_back( arr_b_1 );
            bind_data.push_back( arr_y );

            //所有的梯度参数
            std::vector< NDArray > arg_grad_store;
            arg_grad_store.push_back( NDArray() ); //不需要输入的梯度
            arg_grad_store.push_back( arr_w_0_g );
            arg_grad_store.push_back( arr_b_0_g );
            arg_grad_store.push_back( arr_w_1_g );
            arg_grad_store.push_back( arr_b_1_g );
            arg_grad_store.push_back( NDArray() ); //不需要输出 loss 的梯度

            //如何操作梯度.
            std::vector< mxnet::cpp::OpReqType > grad_req_type;

            grad_req_type.push_back(mxnet::cpp::kNullOp);
            grad_req_type.push_back(mxnet::cpp::kWriteTo);
            grad_req_type.push_back(mxnet::cpp::kWriteTo);
            grad_req_type.push_back(mxnet::cpp::kWriteTo);
            grad_req_type.push_back(mxnet::cpp::kWriteTo);
            grad_req_type.push_back(mxnet::cpp::kNullOp);

            //定义一个状态数组
            std::vector< NDArray > aux_states;

            std::cout<<" make the Executor"<<std::endl;

            std::shared_ptr<mxnet::cpp::Executor > executor
                    = std::make_shared<mxnet::cpp::Executor>(
                            pred,
                            ctx,
                            bind_data,
                            arg_grad_store,
                            grad_req_type,
                            aux_states );
            //训练
            std::cout<<" Training "<<std::endl;

            int max_iters = 20000;  //最大迭代次数
            mx_float learning_rate = 0.0001; //学习率

            for (int iter = 0; iter < max_iters ; ++iter) {
                executor->Forward(true);
                if(iter % 100 == 0){
                    std::vector<NDArray> & out = executor->outputs;
                    std::shared_ptr<mx_float> tp_x( new mx_float[128*28] ,
                                                   [](mx_float * tp_x){ delete [] tp_x ;});
                    out[0].SyncCopyToCPU(tp_x.get(),128*10);
                    NDArray::WaitAll();
                    std::cout<<"epoch "<<iter<<"  "<<"Accuracy: "<<  OutputAccuracy(tp_x.get() , aptr_y.get())<<std::endl;
                }
                //依据梯度更新参数
                executor->Backward();
                for (int i = 1; i <5 ; ++i) {
                    bind_data[i] -= arg_grad_store[i]*learning_rate;
                }
                NDArray::WaitAll();
            }

        }
        static bool SetDriver();
    };

    template <typename T , typename U >
    bool MLP<T,U>::SetDriver() {
        return true;
    }
    template <typename T , typename U >
    bool MLP<T,U>::train(T x, U y) {
        return true;
    }
    template <typename T , typename U >
    bool MLP<T,U>::predict(T x) {
        return true;
    }

}


int main(int argc , char * argv[]){
    mlp::MLP<mx_float ,mx_uint>::net();
    MXNotifyShutdown();
    return 0;
}

结果:

poch 18900 Accuracy: 0.703125 epoch 19000 Accuracy: 0.703125 epoch 19100 Accuracy: 0.703125 epoch 19200 Accuracy: 0.703125 epoch 19300 Accuracy: 0.703125 epoch 19400 Accuracy: 0.703125 epoch 19500 Accuracy: 0.703125 epoch 19600 Accuracy: 0.703125 epoch 19700 Accuracy: 0.703125 epoch 19800 Accuracy: 0.703125 epoch 19900 Accuracy: 0.703125

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-12-08 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档