前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >优化安卓应用内存的神秘方法以及背后的原理,一般人我不告诉他

优化安卓应用内存的神秘方法以及背后的原理,一般人我不告诉他

作者头像
腾讯Bugly
发布2018-03-22 17:37:56
4.9K2
发布2018-03-22 17:37:56
举报
文章被收录于专栏:腾讯Bugly的专栏

安卓应用一般都害怕自己被杀,内存占用高是被杀的重要原因之一,所以大家都想尽各种招数应对,但效果都一般。

但有一招:

代码语言:javascript
复制
WindowManagerGlobal.getInstance().startTrimMemory(TRIM_MEMORY_COMPLETE);

几乎没有人提及。这段时间的实战,发现效果还不错,但要掌握好这个函数的用法,需要仔细理解背后的原理,毕竟这个调用相当于在局部时间内让应用的一系列GPU缓存被清理,相当于硬件加速失效。

文章分三大部分,第一大部分用简单的方式描述安卓绘制系统框架,第二大部分说明绘制过程中GPU产生缓存的原因。第三大部分说明startTrimMemory能够清理的GPU缓存以及一些误区。

(一)简介安卓绘制系统框架

安卓绘制系统比较复杂,网上很多文章讲得很细,但不容易抓住核心要点,其实我们只要抓到12个关键的对应关系和概念,就可以掌握清晰基本框架,对debug和性能优化都有价值。

1)一个activity对应一个window,当然,没有activity耶可以有window,比如通知栏,window大家都知道,有各种属性,比如层次,位置等等

2)一个window对应一个surface,surface其实就是一个对graphic buffer进行管理的对象

3)surface的创建是请求surfaceflinger完成的,其实对应的是一块graphicbuffer,gpu和cp都能访问到

4)window上可以有很多的view,可以是一棵view的tree,对于activity来说,顶部的view就是DecorView,activity上所有的view都对应同一个surface

5)相比activity里的view,surfaceview(glsurfaceview)会有自己独立的surface,有自己独立的处理线程,与activity的surface不是同一个

6)activity的view的绘制(打开硬件加速的情况下),其实就是在一个surface上的绘制,最终通过hwui这个so完成,这是在应用端进行的,不是在surfaceflinger这一侧。hwui是硬件绘制的关键库,最关键的是hwui里有一系列GPU缓存,避免在绘制的时候重新再上传图片纹理等GPU绘制相关的数据

7)各个surface还有一个合成的过程,这是在surfaceflinger中完成的

8)每一次activity的view的绘制和surface的合成,都是通过vsync信号触发的,vsync每16.6毫秒触发一次

9)surfaceview(glsurfaceview)的绘制可以不通过vsync来同步,自己的线程独立控制节奏,但是绘制之后的surface的合成,由surfaceflinger统一进行

10)应用侧的surface,无论是view还是surface view对应的,绘制完毕之后,通过eglwapbuffer的方法,将graphicbuffer queue回给surfaceflinger(surfaceflinger合成完毕之后,会上屏,之后会释放出来,让应用侧可以重新使用这些buffer)

11)view做动画的时候,如果子view没有刷新,子view的ondraw可以不被触发,这是动画过程性能高效的一个关键点,以view的hardware layer缓存整体做动画即可,在view做动画的时候如果触发了子view的重新绘制,绘制效率就会降低

12) 目前主流安卓手机,GPU和CPU会共享内存,GPU占用内存多了,留给CPU的就会相应减少,每个进程GPU占用的内存,也会被统计到各个进程的总内存当中,会影响到low memory killer的策略

另外一张图大致也可以反映出上面的12个关键描述的部分体系结构

(二)canvas 绘制bitmap 导致的GPU缓存(俗称GPU内存泄漏)

大家肯定感兴趣,一个bitmap,是如何绘制到屏幕上的view的绘制代码里会触发canvas.drawBitmap,硬件加速打开的话,canvas其实就是GLES20RecordingCanvas,GLES20RecordingCanvas的父类是GLES20Canvas。

我们看看GLES20Canvas的GLES20Canvas::DrawBitmap的代码:

代码语言:javascript
复制
@Override
public void drawBitmap(Bitmap bitmap, float left, float top, Paint paint) {
throwIfCannotDraw(bitmap);
// Shaders are ignored when drawing bitmaps
int modifiers = paint != null ? setupModifiers(bitmap, paint) : MODIFIER_NONE;
try {
final int nativePaint = paint == null ? 0 : paint.mNativePaint;
nDrawBitmap(mRenderer, bitmap.mNativeBitmap, bitmap.mBuffer, left, top, nativePaint);
} finally {
if (modifiers != MODIFIER_NONE) nResetModifiers(mRenderer, modifiers);
}
}

GLES20Canvas对应的native代码是android_view_GLES20Canvas.cpp,android_view_GLES20Canvas_drawBitmap 就是nDrawBitmap的具体实现。

代码语言:javascript
复制
static void android_view_GLES20Canvas_drawBitmap(JNIEnv* env, jobject clazz,
OpenGLRenderer* renderer, SkBitmap* bitmap, jbyteArray buffer, float left,
float top, SkPaint* paint) {
// This object allows the renderer to allocate a global JNI ref to the buffer object.
JavaHeapBitmapRef bitmapRef(env, bitmap, buffer);
renderer->drawBitmap(bitmap, left, top, paint);
}

这里已经很明确,canvas的drawbitmap其实调用的就是hwui里的OpenGLRenderer的drawBitmap,我们看看里面做了什么事情。

代码语言:javascript
复制
status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint) {
const float right = left + bitmap->width();
const float bottom = top + bitmap->height();
if (quickReject(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
drawAlphaBitmap(texture, left, top, paint);
} else {
drawTextureRect(left, top, right, bottom, texture, paint);
}

hwui有TextureCache对象,将绘制的bitmap缓存在gpu纹理里,这样下次如果有重复的,就可以直接使用来进行绘制,避免再次上传纹理。

如果TextureCache里没有相关bitmap的缓存,TextureCache就会创建bitmap的纹理缓存,如果缓存空间不够了,TextureCache就会移除最老的bitmap的缓存,释放空间給新的bitmap做缓存。

代码语言:javascript
复制
Texture* TextureCache::get(SkBitmap* bitmap) {
Texture* texture = mCache.get(bitmap);
if (!texture) {
if (bitmap->width() > mMaxTextureSize || bitmap->height() > mMaxTextureSize) {
ALOGW("Bitmap too large to be uploaded into a texture (%dx%d, max=%dx%d)",
bitmap->width(), bitmap->height(), mMaxTextureSize, mMaxTextureSize);
return NULL;
}
const uint32_t size = bitmap->rowBytes() * bitmap->height();
// Don't even try to cache a bitmap that's bigger than the cache
if (size < mMaxSize) {
while (mSize + size > mMaxSize) {
mCache.removeOldest();
}
}
texture = new Texture();
texture->bitmapSize = size;
generateTexture(bitmap, texture, false);
if (size < mMaxSize) {
mSize += size;
TEXTURE_LOGD("TextureCache::get: create texture(%p): name, size, mSize = %d, %d, %d",
bitmap, texture->id, size, mSize);
if (mDebugEnabled) {
ALOGD("Texture created, size = %d", size);
}
mCache.put(bitmap, texture);
} else {
texture->cleanup = true;
}
} else if (bitmap->getGenerationID() != texture->generation) {
generateTexture(bitmap, texture, true);
}
return texture;
}

有意思的是TextureCache如何知道是同一个bitmap,这个依赖于LRUCache,TextureCache里的成员变量mCache,这个LRUCache中,bitmap相当于是key。这意味着什么?意味着如果你的bitmap没有复用,每次对象都不一样的话,必然会在gpu空间产生一份拷贝。

即使你是一位优秀的android开发,非常注意回收bitmap,gpu空间依然会有占用,因为在bitmap的回收函数中,并没有对主动清除TextureCache的调用。

当一个canvas反复被触发绘制的时候,内存监测工具依然可以发现内存泄漏,GPU的缓存不断上涨就是一个很有可能的原因。那系统什么时候可以释放?

(三)系统如何释放GPU缓存

系统会在什么时候释放这些GPU缓存呢?一般是在ActivityManagerService(AMS)里,当应用切换的时候,AMS就会触发trimApplication函数,trimApplication调用的updateOomAdjLocked里会有如下的清除缓存的过程:

这个可以看出:

1.系统会在某个时候清除hwui里申请的GPU缓存

2.在后台时间越久的进程越容易被清理,排在最后的可以被深度清理,具体代码在hardwarerender.java里:

代码语言:javascript
复制
static void startTrimMemory(int level) {
if (sEgl == null || sEglConfig == null) return;
Gl20RendererEglContext managedContext =
(Gl20RendererEglContext) sEglContextStorage.get();
// We do not have OpenGL objects
if (managedContext == null) {
return;
} else {
usePbufferSurface(managedContext.getContext());
}
if (level >= ComponentCallbacks2.TRIM_MEMORY_COMPLETE) {
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_FULL);
} else if (level >= ComponentCallbacks2.TRIM_MEMORY_UI_HIDDEN) {
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_MODERATE);
}
}

GLES20的flushCaches本质上还是调用了hwui的Caches.cpp的操作函数Caches::flush(FlushMode mode)

代码语言:javascript
复制
void Caches::flush(FlushMode mode) {
FLUSH_LOGD("Flushing caches (mode %d)", mode);
// We must stop tasks before clearing caches
if (mode > kFlushMode_Layers) {
tasks.stop();
}
switch (mode) {
case kFlushMode_Full:
textureCache.clear();
patchCache.clear();
dropShadowCache.clear();
gradientCache.clear();
fontRenderer->clear();
fboCache.clear();
dither.clear();
// fall through
case kFlushMode_Moderate:
fontRenderer->flush();
textureCache.flush();
pathCache.clear();
// fall through
case kFlushMode_Layers:
layerCache.clear();
renderBufferCache.clear();
break;
}
clearGarbage();
}

GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_FULL) 对应的是kFlushMode_Full,这个清理的程度最深

代码语言:javascript
复制
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_MODERATE)对应的是kFlushMode_Moderate
GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_LAYERS)对应的是kFlushMode_Layers

关于kFlushMode_Layers,我们要小心。

当我们往windowmanager里addview之后,如果做了removeView,并不会释放view里的texture cache,但是会触发GLES20Canvas.flushCaches(GLES20Canvas.FLUSH_CACHES_LAYERS),清除layer cache。在之前的工作中,团队曾有讨论,认为removeView可以充分释放GPU缓存,这个结论是不准确的。最近有位同学研究的很深入,他的demo和源码走读证明了removeView只会释放layer cache,并没有触发纹理缓存的回收,这意味着什么?意味通知系统动态addView->显示 ->removeView的过程依然会导致GPU内存逐步上涨,系统剩余内存越来越少的情况,直到系统AMS触发startTrimMemory后,内存才会被回收一些。

总结一下:应用开发者调用startTrimMemory会帮助app或者系统更多的释放内存,减少内存压力,但是调用的位置和时机要慎重,因为清除了缓存,在下一次绘制(vsync的下一个信号到来)的时候绘制效率不会很高。

作者简介

黄石柱 MIG智能平台产品部终端开发组副总监 10年的移动端软件研发经验,4年腾讯终端开发经验,在腾讯主导设计研发tita(tos前身),魅拍等多款产品,目前正在深入tos的研发以及虚拟现实技术的研发,在安卓操作系统,多媒体技术上有不错的积累,开发公司级课件《深入安卓省电十大困惑》。

腾讯Bugly 最专业的质量跟踪平台

精神哥、小萝莉,为您定期分享应用崩溃解决方案

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2015-08-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯Bugly 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档