前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OpenCV3.4两种立体匹配算法效果对比

OpenCV3.4两种立体匹配算法效果对比

作者头像
一棹烟波
发布2018-03-19 17:31:03
4.8K1
发布2018-03-19 17:31:03
举报
文章被收录于专栏:一棹烟波

 以OpenCV自带的Aloe图像对为例:

1.BM算法(Block Matching)

参数设置如下:

代码语言:javascript
复制
    int numberOfDisparities = ((imgSize.width / 8) + 15) & -16;
    cv::Ptr<cv::StereoBM> bm = cv::StereoBM::create(16, 9);
    cv::Rect roi1, roi2;
    bm->setROI1(roi1);
    bm->setROI2(roi2);
    bm->setPreFilterCap(31);
    bm->setBlockSize(9);
    bm->setMinDisparity(0);
    bm->setNumDisparities(numberOfDisparities);
    bm->setTextureThreshold(10);
    bm->setUniquenessRatio(15);
    bm->setSpeckleWindowSize(100);
    bm->setSpeckleRange(32);
    bm->setDisp12MaxDiff(1);
    bm->compute(imgL, imgR, disp);

效果如下:

BM算法得到的视差图(左),空洞填充后得到的视差图(右)

2.SGBM(Semi-Global Block matching)算法:

参数设置如下:

代码语言:javascript
复制
enum { STEREO_BM = 0, STEREO_SGBM = 1, STEREO_HH = 2, STEREO_VAR = 3, STEREO_3WAY = 4 };
    int numberOfDisparities = ((imgSize.width / 8) + 15) & -16;
    cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(0, 16, 3);
    sgbm->setPreFilterCap(63);
    int SADWindowSize = 9;
    int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3;
    sgbm->setBlockSize(sgbmWinSize);
    int cn = imgL.channels();
    sgbm->setP1(8 * cn*sgbmWinSize*sgbmWinSize);
    sgbm->setP2(32 * cn*sgbmWinSize*sgbmWinSize);
    sgbm->setMinDisparity(0);
    sgbm->setNumDisparities(numberOfDisparities);
    sgbm->setUniquenessRatio(10);
    sgbm->setSpeckleWindowSize(100);
    sgbm->setSpeckleRange(32);
    sgbm->setDisp12MaxDiff(1);

    int alg = STEREO_SGBM;
    if (alg == STEREO_HH)
        sgbm->setMode(cv::StereoSGBM::MODE_HH);
    else if (alg == STEREO_SGBM)
        sgbm->setMode(cv::StereoSGBM::MODE_SGBM);
    else if (alg == STEREO_3WAY)
        sgbm->setMode(cv::StereoSGBM::MODE_SGBM_3WAY);
    sgbm->compute(imgL, imgR, disp);

 效果如图:

SGBM算法得到的视差图(左),空洞填充后得到的视差图(右)

可见SGBM算法得到的视差图相比于BM算法来说,减少了很多不准确的匹配点,尤其是在深度不连续区域,速度上SGBM要慢于BM算法。OpenCV3.0以后没有实现GC算法,可能是出于速度考虑,以后找时间补上对比图,以及各个算法的详细原理分析。

后面我填充空洞的效果不是很好,如果有更好的方法,望不吝赐教。


preFilterCap()匹配图像预处理

  • 两种立体匹配算法都要先对输入图像做预处理,OpenCV源码中中调用函数 static void prefilterXSobel(const cv::Mat& src, cv::Mat& dst, int preFilterCap),参数设置中preFilterCap在此函数中用到。函数步骤如下,作用主要有两点:对于无纹理区域,能够排除噪声干扰;对于边界区域,能够提高边界的区分性,利于后续的匹配代价计算:
  1. 先利用水平Sobel算子求输入图像x方向的微分值Value;
  2. 如果Value<-preFilterCap, 则Value=0; 如果Value>preFilterCap,则Value=2*preFilterCap; 如果Value>=-preFilterCap &&Value<=preFilterCap,则Value=Value+preFilterCap;
  3. 输出处理后的图像作为下一步计算匹配代价的输入图像。
代码语言:javascript
复制
static void prefilterXSobel(const cv::Mat& src, cv::Mat& dst, int ftzero)
{
    int x, y;
    const int OFS = 256 * 4, TABSZ = OFS * 2 + 256;
    uchar tab[TABSZ];
    cv::Size size = src.size();

    for (x = 0; x < TABSZ; x++)
        tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero * 2 : x - OFS + ftzero);
    uchar val0 = tab[0 + OFS];

    for (y = 0; y < size.height - 1; y += 2)
    {
        const uchar* srow1 = src.ptr<uchar>(y);
        const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1;
        const uchar* srow2 = y < size.height - 1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1;
        const uchar* srow3 = y < size.height - 2 ? srow1 + src.step * 2 : srow1;
        uchar* dptr0 = dst.ptr<uchar>(y);
        uchar* dptr1 = dptr0 + dst.step;

        dptr0[0] = dptr0[size.width - 1] = dptr1[0] = dptr1[size.width - 1] = val0;
        x = 1;
        for (; x < size.width - 1; x++)
        {
            int d0 = srow0[x + 1] - srow0[x - 1], d1 = srow1[x + 1] - srow1[x - 1],
                d2 = srow2[x + 1] - srow2[x - 1], d3 = srow3[x + 1] - srow3[x - 1];
            int v0 = tab[d0 + d1 * 2 + d2 + OFS];
            int v1 = tab[d1 + d2 * 2 + d3 + OFS];
            dptr0[x] = (uchar)v0;
            dptr1[x] = (uchar)v1;
        }
    }

    for (; y < size.height; y++)
    {
        uchar* dptr = dst.ptr<uchar>(y);
        x = 0;
        for (; x < size.width; x++)
            dptr[x] = val0;
    }
}

自己实现的函数如下:

代码语言:javascript
复制
void mySobelX(cv::Mat srcImg, cv::Mat dstImg, int preFilterCap)
{
    assert(srcImg.channels() == 1);
    int radius = 1;
    int width = srcImg.cols;
    int height = srcImg.rows;
    uchar *pSrcData = srcImg.data;
    uchar *pDstData = dstImg.data;
    for (int i = 0; i < height; i++)
    {
        for (int j = 0; j < width; j++)
        {
            int idx = i*width + j;
            if (i >= radius && i < height - radius && j >= radius && j < width - radius)
            {
                int diff0 = pSrcData[(i - 1)*width + j + 1] - pSrcData[(i - 1)*width + j - 1];
                int diff1 = pSrcData[i*width + j + 1] - pSrcData[i*width + j - 1];
                int diff2 = pSrcData[(i + 1)*width + j + 1] - pSrcData[(i + 1)*width + j - 1];

                int value = diff0 + 2 * diff1 + diff2;
                if (value < -preFilterCap)
                {
                    pDstData[idx] = 0;
                }
                else if (value >= -preFilterCap && value <= preFilterCap)
                {
                    pDstData[idx] = uchar(value + preFilterCap);
                }
                else
                {
                    pDstData[idx] = uchar(2 * preFilterCap);
                }

            }
            else
            {
                pDstData[idx] = 0;
            }
        }
    }
}

函数输入,输出结果如图:


 filterSpeckles()视差图后处理

  •  两种立体匹配算法在算出初始视差图后会进行视差图后处理,包括中值滤波,连通域检测等。其中中值滤波能够有效去除视差图中孤立的噪点,而连通域检测能够检测出视差图中因噪声引起小团块(blob)。在BM和SGBM中都有speckleWindowSize和speckleRange这两个参数,speckleWindowSize是指设置检测出的连通域中像素点个数,也就是连通域的大小。speckleRange是指设置判断两个点是否属于同一个连通域的阈值条件。大概流程如下:
  1. 判断当前像素点四邻域的邻域点与当前像素点的差值diff,如果diff<speckRange,则表示该邻域点与当前像素点是一个连通域,设置一个标记。然后再以该邻域点为中心判断其四邻域点,步骤同上。直至某一像素点四邻域的点均不满足条件,则停止。
  2. 步骤1完成后,判断被标记的像素点个数count,如果像素点个数count<=speckleWindowSize,则说明该连通域是一个小团块(blob),则将当前像素点值设置为newValue(表示错误的视差值,newValue一般设置为负数或者0值)。否则,表示该连通域是个大团块,不做处理。同时建立标记值与是否为小团块的关系表rtype[label],rtype[label]为0,表示label值对应的像素点属于小团块,为1则不属于小团块。
  3. 处理下一个像素点时,先判断其是否已经被标记: 如果已经被标记,则根据关系表rtype[label]判断是否为小团块(blob),如果是,则直接将该像素值设置为newValue;如果不是,则不做处理。继续处理下一个像素。 如果没有被标记,则按照步骤1处理。
  4. 所有像素点处理后,满足条件的区域会被设置为newValue值,后续可以用空洞填充等方法重新估计其视差值。

OpenCV中有对应的API函数,void filterSpeckles(InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff, InputOutputArray buf=noArray() ) 

函数源码如下,使用时根据视差图或者深度图数据类型设置模板中的数据类型:

代码语言:javascript
复制
typedef cv::Point_<short> Point2s;
template <typename T> void filterSpecklesImpl(cv::Mat& img, int newVal, int maxSpeckleSize, int maxDiff, cv::Mat& _buf)
{
    using namespace cv;

    int width = img.cols, height = img.rows, npixels = width*height;
    size_t bufSize = npixels*(int)(sizeof(Point2s) + sizeof(int) + sizeof(uchar));
    if (!_buf.isContinuous() || _buf.empty() || _buf.cols*_buf.rows*_buf.elemSize() < bufSize)
        _buf.create(1, (int)bufSize, CV_8U);

    uchar* buf = _buf.ptr();
    int i, j, dstep = (int)(img.step / sizeof(T));
    int* labels = (int*)buf;
    buf += npixels * sizeof(labels[0]);
    Point2s* wbuf = (Point2s*)buf;
    buf += npixels * sizeof(wbuf[0]);
    uchar* rtype = (uchar*)buf;
    int curlabel = 0;

    // clear out label assignments
    memset(labels, 0, npixels * sizeof(labels[0]));

    for (i = 0; i < height; i++)
    {
        T* ds = img.ptr<T>(i);
        int* ls = labels + width*i;

        for (j = 0; j < width; j++)
        {
            if (ds[j] != newVal)   // not a bad disparity
            {
                if (ls[j])     // has a label, check for bad label
                {
                    if (rtype[ls[j]]) // small region, zero out disparity
                        ds[j] = (T)newVal;
                }
                // no label, assign and propagate
                else
                {
                    Point2s* ws = wbuf; // initialize wavefront
                    Point2s p((short)j, (short)i);  // current pixel
                    curlabel++; // next label
                    int count = 0;  // current region size
                    ls[j] = curlabel;

                    // wavefront propagation
                    while (ws >= wbuf) // wavefront not empty
                    {
                        count++;
                        // put neighbors onto wavefront
                        T* dpp = &img.at<T>(p.y, p.x); //current pixel value
                        T dp = *dpp;
                        int* lpp = labels + width*p.y + p.x; //current label value

                        //bot
                        if (p.y < height - 1 && !lpp[+width] && dpp[+dstep] != newVal && std::abs(dp - dpp[+dstep]) <= maxDiff)
                        {
                            lpp[+width] = curlabel;
                            *ws++ = Point2s(p.x, p.y + 1);
                        }
                        //top
                        if (p.y > 0 && !lpp[-width] && dpp[-dstep] != newVal && std::abs(dp - dpp[-dstep]) <= maxDiff)
                        {
                            lpp[-width] = curlabel;
                            *ws++ = Point2s(p.x, p.y - 1);
                        }
                        //right
                        if (p.x < width - 1 && !lpp[+1] && dpp[+1] != newVal && std::abs(dp - dpp[+1]) <= maxDiff)
                        {
                            lpp[+1] = curlabel;
                            *ws++ = Point2s(p.x + 1, p.y);
                        }
                        //left
                        if (p.x > 0 && !lpp[-1] && dpp[-1] != newVal && std::abs(dp - dpp[-1]) <= maxDiff)
                        {
                            lpp[-1] = curlabel;
                            *ws++ = Point2s(p.x - 1, p.y);
                        }
                        

                        // pop most recent and propagate
                        // NB: could try least recent, maybe better convergence
                        p = *--ws;
                    }

                    // assign label type
                    if (count <= maxSpeckleSize)   // speckle region
                    {
                        rtype[ls[j]] = 1;   // small region label
                        ds[j] = (T)newVal;
                    }
                    else
                        rtype[ls[j]] = 0;   // large region label
                }
            }
        }
    }
}

 或者下面博主自己整理一遍的代码:

代码语言:javascript
复制
typedef cv::Point_<short> Point2s;
template <typename T> void myFilterSpeckles(cv::Mat &img, int newVal, int maxSpeckleSize, int maxDiff)
{
    int width = img.cols;
    int height = img.rows;
    int imgSize = width*height;
    int *pLabelBuf = (int*)malloc(sizeof(int)*imgSize);//标记值buffer
    Point2s *pPointBuf = (Point2s*)malloc(sizeof(short)*imgSize);//点坐标buffer
    uchar *pTypeBuf = (uchar*)malloc(sizeof(uchar)*imgSize);//blob判断标记buffer
    //初始化Labelbuffer
    int currentLabel = 0;
    memset(pLabelBuf, 0, sizeof(int)*imgSize);

    for (int i = 0; i < height; i++)
    {
        T *pData = img.ptr<T>(i);
        int *pLabel = pLabelBuf + width*i;
        for (int j = 0; j < width; j++)
        {
            if (pData[j] != newVal)
            {
                if (pLabel[j])
                {
                    if (pTypeBuf[pLabel[j]])
                    {
                        pData[j] = (T)newVal;
                    }
                }
                else
                {
                    Point2s *pWave = pPointBuf;
                    Point2s curPoint((T)j, (T)i);
                    currentLabel++;
                    int count = 0;
                    pLabel[j] = currentLabel;
                    while (pWave >= pPointBuf)
                    {
                        count++;
                        T *pCurPos = &img.at<T>(curPoint.y, curPoint.x);
                        T curValue = *pCurPos;
                        int *pCurLabel = pLabelBuf + width*curPoint.y + curPoint.x;
                        //bot
                        if (curPoint.y < height - 1 && !pCurLabel[+width] && pCurPos[+width] != newVal  && abs(curValue - pCurPos[+width]) <= maxDiff)
                        {
                            pCurLabel[+width] = currentLabel;
                            *pWave++ = Point2s(curPoint.x, curPoint.y + 1);
                        }
                        //top
                        if (curPoint.y > 0 && !pCurLabel[-width] && pCurPos[-width] != newVal && abs(curValue - pCurPos[-width]) <= maxDiff)
                        {
                            pCurLabel[-width] = currentLabel;
                            *pWave++ = Point2s(curPoint.x, curPoint.y - 1);
                        }
                        //right
                        if (curPoint.x < width-1 && !pCurLabel[+1] && pCurPos[+1] != newVal  && abs(curValue - pCurPos[+1]) <= maxDiff)
                        {
                            pCurLabel[+1] = currentLabel;
                            *pWave++ = Point2s(curPoint.x + 1, curPoint.y);
                        }
                        //left
                        if (curPoint.x > 0 && !pCurLabel[-1] && pCurPos[-1] != newVal && abs(curValue - pCurPos[-1]) <= maxDiff)
                        {
                            pCurLabel[-1] = currentLabel;
                            *pWave++ = Point2s(curPoint.x - 1, curPoint.y);
                        }

                        --pWave;
                        curPoint = *pWave;
                    }

                    if (count <= maxSpeckleSize)
                    {
                        pTypeBuf[pLabel[j]] = 1;
                        pData[j] = (T)newVal;
                    }
                    else
                    {
                        pTypeBuf[pLabel[j]] = 0;
                    }
                }
            }
        }
    }

    free(pLabelBuf);
    free(pPointBuf);
    free(pTypeBuf);
}

如下视差图中左上角部分有7个小团块,设置speckleWindowSize和speckleRange分别为50和32,连通域检测后结果为如下图右,小团块能够全部检测出来,方便后续用周围视差填充。当然还有一个缺点就是,图像中其他地方尤其是边界区域也会被检测为小团块,后续填充可能会对边界造成平滑。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.BM算法(Block Matching)
  • 2.SGBM(Semi-Global Block matching)算法:
    • preFilterCap()匹配图像预处理
      •  filterSpeckles()视差图后处理
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档