前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tomcat请求处理分析(四) 监听请求轮询处理

tomcat请求处理分析(四) 监听请求轮询处理

作者头像
cfs
发布2018-03-08 15:38:05
1.5K0
发布2018-03-08 15:38:05
举报
文章被收录于专栏:编码小白
1.1.1.1  startInternal方法

这个方法是核心的启动方法,目前理解主要做了两件事情,第一件是创建轮询线程,即具体的读取线程,它是进行具体的处理,第二个是创建创建监听请求线程,它是等待请求,然后交给轮训进行处理。

public void startInternal() throws Exception { if (!running) { running = true; paused = false; //一种带锁的栈,processorCache processorCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE, socketProperties.getProcessorCache()); //事件缓存 eventCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE, socketProperties.getEventCache()); //nio管道 nioChannels = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE, socketProperties.getBufferPool()); // Create workercollection if (getExecutor() == null ) {             createExecutor();  //实例化当前对象的成员变量executor,构建了一个线程池 }         initializeConnectionLatch(); //Poller的数量控制如果不设置的话最大就是2 pollers = new Poller[getPollerThreadCount()];         for (int i=0; i<pollers.length; i++) { pollers[i] = new Poller(); Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-"+i); pollerThread.setPriority(threadPriority);//用来设置进程、进程组和用户的进程执行优先权 pollerThread.setDaemon(true);//设置为守护线程 pollerThread.start(); } startAcceptorThreads(); } }

1.1.1.1.1     Poller启动

它是被设计成了守护线程,并且进行启动,其run方法如下,采用选择器的非阻塞方式,如果没有获取到注册事件返回空,下面迭代为空所以就什么都没有执行,如果返回不为空则会执行processKey方法。

public void run() { //这是一个线程,所以进行死循环 while (true) { try { //如果是暂停并且未关闭则睡10s while (paused &&(!close) ) { try {                     Thread.sleep(100); } catch (InterruptedExceptione) { }             } boolean hasEvents = false; //如果关闭之后,执行完毕时间后,关闭选择器 if (close) {                 events(); timeout(0, false);                 try { selector.close(); } catch (IOExceptionioe) { log.error(sm.getString( "endpoint.nio.selectorCloseFail"), ioe); } break; } else {                 hasEvents = events(); } /**              * 如果endpoint是正常工作状态,处理已有的数据。              * 通过events方法来处理当前Poller中已有的事件(数据)。              * 同时使用selector.select或者selectNow来获取这个Poller上              * */ try { if ( !close ) { if (wakeupCounter.getAndSet(-1) > 0) { //if we are here, means we have other stuff to do                         //do a nonblocking select keyCount =selector.selectNow(); } else { keyCount =selector.select(selectorTimeout); } wakeupCounter.set(0); } if (close) {                     events(); timeout(0, false);                     try { selector.close(); } catch (IOExceptionioe) { log.error(sm.getString( "endpoint.nio.selectorCloseFail"), ioe); } break; }             } catch (Throwablex) {                 ExceptionUtils.handleThrowable(x); log.error("",x);                 continue; } //either we timed out orwe woke up, process events first if ( keyCount == 0 ) hasEvents= (hasEvents | events()); //正常状态下的数据处理,通过processKey来实现。获取对应的渠道的key,然后调用processKey方法 Iterator<SelectionKey>iterator = keyCount > 0 ? selector.selectedKeys().iterator(): null; // Walk through thecollection of ready keys and dispatch             // any active event. while (iterator !=null&&iterator.hasNext()) {                 SelectionKey sk =iterator.next(); KeyAttachmentattachment = (KeyAttachment)sk.attachment(); if (attachment== null) {                     iterator.remove(); } else {                     attachment.access(); iterator.remove(); //processKey的主要工作是调用NioEndpoint的processSocket来实现socket的读写。  processKey(sk, attachment); }             }//while timeout(keyCount,hasEvents);             if ( oomParachute>0&&oomParachuteData==null)checkParachute(); } stopLatch.countDown();

}

1.1.1.1.2     Acceptor

这是一个接受请求的线程,调用的是startAcceptorThreads方法,方法代码如下:

protected final void startAcceptorThreads() { int count =getAcceptorThreadCount(); acceptors = new Acceptor[count];     for (int i = 0; i < count; i++) { acceptors[i] = createAcceptor(); String threadName =getName() + "-Acceptor-" + i; acceptors[i].setThreadName(threadName); Thread t = new Thread(acceptors[i], threadName); t.setPriority(getAcceptorThreadPriority()); t.setDaemon(getDaemon()); t.start(); }

}

protectedAbstractEndpoint.AcceptorcreateAcceptor() { return new Acceptor(); }

    所以启动的事Acceptor的线程,主要调用的是其run方法,它做的事情是等待客户端请求,由于在bind方法中ServerSocketChannel这个设置阻塞方式,所以socket = serverSock.accept();在接受请求之后才会进行处理,具体的处理过程在setSocketOptions方法

/**  * Acceptor负责用来管理连接到tomcat服务器的数量  * socket连接建立成功之后,读写是交由Poller机制去完成。  * */ protected class Acceptor extends AbstractEndpoint.Acceptor{ @Override public void run() { int errorDelay =0; while (running) { while (paused && running) { state =AcceptorState.PAUSED;                 try {                     Thread.sleep(50); } catch (InterruptedExceptione) { }             } if (!running) { break; } state =AcceptorState.RUNNING;             try {                countUpOrAwaitConnection(); //计数+1,达到最大值则等待 SocketChannel socket = null;                 try { //ServerSocketChannel 一个阻塞监听等待请求  socket = serverSock.accept(); } catch (IOExceptionioe) { //we didn't geta socket countDownConnection(); // Introducedelay if necessary errorDelay =handleExceptionWithDelay(errorDelay); // re-throw throw ioe; } // Successful accept,reset the error delay errorDelay = 0; // setSocketOptions() willadd channel to the poller                 // if successful if (running && !paused) { //将请求连接放入队列等待处理 if (!setSocketOptions(socket)) {                         countDownConnection(); closeSocket(socket); }                 } else {                     countDownConnection(); //计数-1 closeSocket(socket);   //关闭当前socket套接字 }             } catch (SocketTimeoutExceptionsx) { // Ignore: Normalcondition } catch (IOExceptionx) { if (running) { log.error(sm.getString("endpoint.accept.fail"), x); }             } catch (OutOfMemoryErroroom) { try { oomParachuteData=null; releaseCaches(); log.error("", oom); }catch ( Throwableoomt ) { try { try {                             System.err.println(oomParachuteMsg); oomt.printStackTrace(); }catch (ThrowableletsHopeWeDontGetHere){                             ExceptionUtils.handleThrowable(letsHopeWeDontGetHere); }                     }catch (ThrowableletsHopeWeDontGetHere){                         ExceptionUtils.handleThrowable(letsHopeWeDontGetHere); }                 }             } catch (Throwablet) {                 ExceptionUtils.handleThrowable(t); log.error(sm.getString("endpoint.accept.fail"), t); }         } state =AcceptorState.ENDED; }

}

1.1.1.1.3     acceptor线程转交到poller进行处理

      setSocketOptions方法通过通道获取真实的socket注入一些属性,然后构造NioChannel,将socket通道注入到对应的NioChannel实例,利用getPoller0用的循环的方式来返回Poller然后将NioChannel实例注册

protected boolean setSocketOptions(SocketChannel socket){ // Process the connection try { //设置为非阻塞  socket.configureBlocking(false); //获取socket   Socket sock = socket.socket();//实际socket //配置socket信息 socketProperties.setProperties(sock); //创建一个NioChannel 他封装了SocketChannel NioChannel channel = nioChannels.pop();         if ( channel == null ) { //如果为null 创建一个NioChannel 这里使用系统内存             //使用系统内存可以省去一步从系统内存拷贝到堆内存的动作、性能上会有很大的提升,nioChannels初始化默认为128个             //当socket 关闭的重新清理NioChannel而不是销毁这个对象可以达到对象复用的效果、因为申请系统内存的开销比申请堆内存的开销要大很多 if (sslContext != null) {                 SSLEngine engine =createSSLEngine();                 int appbufsize =engine.getSession().getApplicationBufferSize(); //NioBufferHandler里分别分配了读缓冲区和写缓冲区 NioBufferHandler bufhandler= newNioBufferHandler(Math.max(appbufsize,socketProperties.getAppReadBufSize()), Math.max(appbufsize,socketProperties.getAppWriteBufSize()), socketProperties.getDirectBuffer()); channel = new SecureNioChannel(socket, engine, bufhandler, selectorPool); } else { // normal tcp setup NioBufferHandlerbufhandler = new NioBufferHandler(socketProperties.getAppReadBufSize(), socketProperties.getAppWriteBufSize(), socketProperties.getDirectBuffer()); channel = new NioChannel(socket, bufhandler); }         } else { //如果存在通道,则直接将当前socket注入  channel.setIOChannel(socket);             if ( channel instanceof SecureNioChannel) {                 SSLEngine engine =createSSLEngine(); ((SecureNioChannel)channel).reset(engine); } else {                 channel.reset(); }         } // 这里就是将SocketChannel注册到Poller了。         // getPoller0用的循环的方式来返回Poller,即Poller 1, 2,3... n 然后再回到1, 2, 3..  getPoller0().register(channel); } catch (Throwablet) {         ExceptionUtils.handleThrowable(t);         try { log.error("",t); } catch (Throwablett) {             ExceptionUtils.handleThrowable(tt); } // Tell to close thesocket return false; } return true;

}

上文注册还不是选择器的注入方式,而是在NioEndpoint内部类Poller类的register方法,其代码如下:在前面设置了一些基本属性,然后调用addEvent唤醒对应的选择器,这个selector实例是Poller对象的一个成员变量,对应的非阻塞过程在run方法,所以监听请求世实际还是在Poller的run方法中selectNow后面进行处理

public void register(final NioChannelsocket) { //给当前socket设置为这个Poller实例 socket.setPoller(this); //构造KeyAttachment实例,其继承SocketWrapper KeyAttachment ka = new KeyAttachment(socket); //设置其轮询实例 ka.setPoller(this); ka.setTimeout(getSocketProperties().getSoTimeout()); ka.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests()); ka.setSecure(isSSLEnabled()); // 从Poller的事件对象缓存中取出一个PollerEvent,并用socket初始化事件对象 PollerEvent r = eventCache.pop(); // 设置读操作为感兴趣的操作 ka.interestOps(SelectionKey.OP_READ);     if ( r==null) r = new PollerEvent(socket,ka,OP_REGISTER);     else r.reset(socket,ka,OP_REGISTER); // 加入到Poller对象里的事件队列  addEvent(r); }

private void addEvent(PollerEvent event) { events.offer(event);     if ( wakeupCounter.incrementAndGet()== 0)selector.wakeup(); }

   具体执行的接受到通道注册的时间之后,往下执行,就能够产生相应的选择键,这样会执行processKey这个方法,然后将请求进行处理,并解析成相关的流,返回到界面。

public void run() {  …… /**              * 如果endpoint是正常工作状态,处理已有的数据。              * 通过events方法来处理当前Poller中已有的事件(数据)。              * 同时使用selector.select或者selectNow来获取这个Poller上              * */ try { if ( !close ) { if (wakeupCounter.getAndSet(-1) > 0) {    keyCount = selector.selectNow(); } else {  keyCount = selector.select(selectorTimeout); } wakeupCounter.set(0); } if (close) {                     events(); timeout(0, false);                     try { selector.close(); } catch (IOExceptionioe) { log.error(sm.getString( "endpoint.nio.selectorCloseFail"), ioe); } break; }             } catch (Throwablex) {                 ExceptionUtils.handleThrowable(x); log.error("",x);                 continue; } if ( keyCount == 0 ) hasEvents= (hasEvents | events()); //正常状态下的数据处理,通过processKey来实现。获取对应的渠道的key,然后调用processKey方法 Iterator<SelectionKey>iterator = keyCount > 0 ? selector.selectedKeys().iterator(): null; // Walk through thecollection of ready keys and dispatch             // any active event. while (iterator !=null&&iterator.hasNext()) {                 SelectionKey sk =iterator.next(); KeyAttachmentattachment = (KeyAttachment)sk.attachment(); // Attachment may be nullif another thread has called                 // cancelledKey() if (attachment== null) {                     iterator.remove(); } else {                     attachment.access(); iterator.remove(); //processKey的主要工作是调用NioEndpoint的processSocket来实现socket的读写。  processKey(sk, attachment); }             }//while             //process timeouts timeout(keyCount,hasEvents);             if ( oomParachute>0&&oomParachuteData==null)checkParachute(); } catch (OutOfMemoryErroroom) { try { oomParachuteData = null; releaseCaches(); log.error("", oom); }catch ( Throwableoomt ) { try {                     System.err.println(oomParachuteMsg); oomt.printStackTrace(); }catch (ThrowableletsHopeWeDontGetHere){                     ExceptionUtils.handleThrowable(letsHopeWeDontGetHere); }             }         }     }//while stopLatch.countDown();

}

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年08月19日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.1.1.1  startInternal方法
    • 1.1.1.1.1     Poller启动
      • 1.1.1.1.2     Acceptor
        • 1.1.1.1.3     acceptor线程转交到poller进行处理
        相关产品与服务
        云服务器
        云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档