决策树可能会受到高度变化的影响,使得结果对所使用的特定训练数据而言变得脆弱。
根据您的训练数据样本构建多个模型(称为装袋)可以减少这种差异,但是这些树木是非常相关。
随机森林是装袋的延伸,除了基于多个训练数据样本构建树木之外,它还限制了可用于构建树木的特征,迫使树木不同。这反过来可以提升表现。
在本教程中,您将了解如何在Python中从头开始实现随机森林算法。
完成本教程后,您将知道:
让我们开始吧。
本节简要介绍本教程中使用的随机森林算法和声纳数据集。
决策树涉及在每一步中从数据集中贪婪选择最佳分割点。
如果不修剪,这个算法使决策树容易出现高方差。通过创建具有训练数据集的不同样本的多个树(问题的不同视图)并组合它们的预测,可以利用和减少这种高度的变化。这种方法简称为引导聚合或短套袋。
装袋的局限性在于,使用相同的贪婪算法来创建每棵树,这意味着在每棵树中可能会选择相同或非常相似的分割点,使得不同的树非常相似(树将被关联)。这反过来又使他们的预测相似,从而减轻了最初寻求的差异。
我们可以通过限制贪婪算法在创建树时在每个分割点评估的特征(行)来强制决策树不同。这被称为随机森林算法。
像装袋一样,训练数据集的多个样本被采集并且在每个样本上训练不同的树。不同之处在于,在每一点上,在数据中进行拆分并添加到树中,只能考虑固定的属性子集。
对于分类问题,我们将在本教程中讨论的问题的类型,要分割的属性的数量限制为输入要素数的平方根。
num_features_for_split = sqrt(total_input_features)
这一小变化的结果是彼此更加不同的树(不相关),导致更加多样化的预测,以及单独树木或装袋往往具有更好性能的组合预测。
我们将在本教程中使用的数据集是声纳数据集。
这是一个数据集,描述多波束剖面声纳返回从不同曲面反弹。60个输入变量是不同角度回报的强度。这是一个二元分类问题,需要一个模型来区分金属圆柱的岩石。有208个观察。
这是一个很好理解的数据集。所有变量都是连续的,一般在0到1的范围内。输出变量是我的字符串“M”和岩石的“R”,需要转换为整数1和0。
通过预测在数据集(M或矿)中观测数最多的类,零规则算法可以达到53%的准确度。
您可以在UCI Machine Learning存储库中了解关于此数据集的更多信息。
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
下载免费的数据集,并将其放置在工作目录中,文件名为sonar.all-data.csv。
本教程分为2个步骤。
这些步骤为您需要将随机森林算法应用于自己的预测建模问题奠定了基础。
在决策树中,通过查找导致最低成本的属性和该属性的值来选择分割点。
对于分类问题,这个成本函数通常是基尼指数,它计算分割点创建的数据组的纯度。基尼指数为0是完美的纯度,其中在两类分类问题的情况下,将类别值完全分成两组。
在决策树中找到最佳分割点涉及评估每个输入变量的训练数据集中每个值的成本。
对于装袋和随机森林,这个程序是在训练数据集的样本上执行的,并且是用替换的。更换取样意味着可以选择同一行并将其添加到样品中不止一次。
我们可以更新随机森林的这个程序。我们可以创建一个输入属性样本来考虑,而不是在搜索中枚举输入属性的所有值。
这个输入属性的样本可以随机选择而不需要替换,这意味着每个输入属性只需要在查找具有最低成本的分割点时被考虑一次。
下面是实现此过程的函数名称get_split()。它将数据集和固定数量的输入要素作为输入参数进行评估,数据集可能是实际训练数据集的一个样本。
helper函数test_split()用于通过候选分割点拆分数据集,gini_index()用于根据创建的行组来计算给定拆分的开销。
我们可以看到,通过随机选择特征索引并将其添加到列表(称为特征)来创建特征列表,然后枚举该特征列表并且将训练数据集中的特定值评估为分割点。
# Select the best split point for a dataset
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0])-1)
if index not in features:
features.append(index)
for index in features:
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {'index':b_index, 'value':b_value, 'groups':b_groups}
现在我们知道如何修改决策树算法以便与随机森林算法一起使用,我们可以将它与一个装袋实现一起使用,并将其应用于真实世界的数据集。
在本节中,我们将把随机森林算法应用到声纳数据集。
该示例假定数据集的CSV副本位于当前工作目录中,文件名为sonar.all-data.csv。
首先加载数据集,将字符串值转换为数字,并将输出列从字符串转换为0和1的整数值。这可以通过使用帮助器函数load_csv(),str_column_to_float()和str_column_to_int()来加载和准备数据集。
我们将使用k-fold交叉验证来估计未知数据的学习模型的性能。这意味着我们将构建和评估k个模型,并将性能估计为平均模型误差。分类准确性将用于评估每个模型。这些行为在cross_validation_split(),accuracy_metric()和evaluate_algorithm()辅助函数中提供。
我们也将使用适合套袋包括辅助功能分类和回归树(CART)算法的实现)test_split(拆分数据集分成组,gini_index()来评估分割点,我们修改get_split()函数中讨论在前一步中,to_terminal(),split()和build_tree()用于创建单个决策树,预测()使用决策树进行预测,subsample()创建训练数据集的子采样,以及bagging_predict()用决策树列表进行预测。
开发了一个新的函数名称random_forest(),首先根据训练数据集的子样本创建一个决策树列表,然后使用它们进行预测。
正如我们上面所说的,随机森林和袋装决策树之间的关键区别是对树的创建方式的一个小的改变,这里在get_split()函数中。
完整的例子如下所示。
# Random Forest Algorithm on Sonar Dataset
from random import seed
from random import randrange
from csv import reade
from math import sqrt
# Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# Convert string column to intege
def str_column_to_int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate(unique):
lookup[value] = i
for row in dataset:
row[column] = lookup[row[column]]
return lookup
# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
# Split a dataset based on an attribute and an attribute value
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right
# Calculate the Gini index for a split dataset
def gini_index(groups, classes):
# count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
# sum weighted Gini index for each group
gini = 0.0
for group in groups:
size = float(len(group))
# avoid divide by zero
if size == 0:
continue
score = 0.0
# score the group based on the score for each class
for class_val in classes:
p = [row[-1] for row in group].count(class_val) / size
score += p * p
# weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)
return gini
# Select the best split point for a dataset
def get_split(dataset, n_features):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
features = list()
while len(features) < n_features:
index = randrange(len(dataset[0])-1)
if index not in features:
features.append(index)
for index in features:
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {'index':b_index, 'value':b_value, 'groups':b_groups}
# Create a terminal node value
def to_terminal(group):
outcomes = [row[-1] for row in group]
return max(set(outcomes), key=outcomes.count)
# Create child splits for a node or make terminal
def split(node, max_depth, min_size, n_features, depth):
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left, n_features)
split(node['left'], max_depth, min_size, n_features, depth+1)
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right, n_features)
split(node['right'], max_depth, min_size, n_features, depth+1)
# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
root = get_split(train, n_features)
split(root, max_depth, min_size, n_features, 1)
return root
# Make a prediction with a decision tree
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']
# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):
sample = list()
n_sample = round(len(dataset) * ratio)
while len(sample) < n_sample:
index = randrange(len(dataset))
sample.append(dataset[index])
return sample
# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
predictions = [predict(tree, row) for tree in trees]
return max(set(predictions), key=predictions.count)
# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
trees = list()
for i in range(n_trees):
sample = subsample(train, sample_size)
tree = build_tree(sample, max_depth, min_size, n_features)
trees.append(tree)
predictions = [bagging_predict(trees, row) for row in test]
return(predictions)
# Test the random forest algorithm
seed(2)
# load and prepare data
filename = 'sonar.all-data.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0])-1):
str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
# evaluate algorithm
n_folds = 5
max_depth = 10
min_size = 1
sample_size = 1.0
n_features = int(sqrt(len(dataset[0])-1))
for n_trees in [1, 5, 10]:
scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
print('Trees: %d' % n_trees)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))
使用k值5进行交叉验证,在每次迭代中给出每个倍数208/5 = 41.6或者刚好超过40个记录。
构建深度树的最大深度为10,每个节点的最小训练行数为1.训练数据集样本的创建大小与原始数据集相同,这是随机森林算法的默认期望值。
在每个分割点处考虑的特征的数量被设置为sqrt(num_features)或者sqrt(60)= 7.74被舍入到7个特征。
评估3种不同数量的树木进行比较,显示随着更多树木的添加,增加的技能。
运行该示例将打印每个折叠的分数和每个配置的平均分数。
Trees: 1
Scores: [56.09756097560976, 63.41463414634146, 60.97560975609756, 58.536585365853654, 73.17073170731707]
Mean Accuracy: 62.439%
Trees: 5
Scores: [70.73170731707317, 58.536585365853654, 85.36585365853658, 75.60975609756098, 63.41463414634146]
Mean Accuracy: 70.732%
Trees: 10
Scores: [82.92682926829268, 75.60975609756098, 97.5609756097561, 80.48780487804879, 68.29268292682927]
Mean Accuracy: 80.976%
本节列出了您可能有兴趣探索的本教程的扩展。
你有没有尝试这些扩展? 在下面的评论中分享你的经验。
在本教程中,您了解了如何从头开始实现随机森林算法。
具体来说,你了解到: