前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >批处理作业调度-回溯法

批处理作业调度-回溯法

作者头像
用户1154259
发布2018-01-17 15:44:09
1K0
发布2018-01-17 15:44:09
举报

问题描述:

  给定n个作业,集合J=(J1,J2,J3)。每一个作业Ji都有两项任务分别在2台机器上完成。每个作业必须先有机器1处理,然后再由机器2处理。作业Ji需要机器j的处理时间为tji。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理时间。则所有作业在机器2上完成处理时间和f=F2i,称为该作业调度的完成时间和。

简单描述:

  对于给定的n个作业,指定最佳作业调度方案,使其完成时间和达到最小。 算法设计:

  从n个作业中找出有最小完成时间和的作业调度,所以批处理作业调度问题的解空间是一棵排列树。

  类Flowshop的数据成员记录解空间的结点信息,M输入作业时间,bestf记录当前最小完成时间和,bestx记录相应的当前最佳作业调度。

  在递归函数Backtrack中,

当i>n时,算法搜索至叶子结点,得到一个新的作业调度方案。此时算法适时更新当前最优值和相应的当前最佳调度。

    当i<n时,当前扩展结点在i-1层,以深度优先方式,递归的对相应子树进行搜索,对不满足上界约束的结点,则剪去相应的子树。

算法描述:

代码语言:javascript
复制
class Flowshop
{
    friend Flow(int * *,int,int[]);
private:
    void Backtrack(int i);
    int * * M,
        * x,
        * bestx,
        * f2,
        f1,
        f,
        bestf,
        n;
};
void Flowshop::Backtrack(int i)
{
    if(i>n)
    {
        for(int j=1;j<=n;j++)
            bestx[j] = x[j];
        bestf = f;
    }
    else
    {
        for(int j=i;j<=n;j++)
        {
            f1+=M[x[j]][i];
            f2=((f2[i-1]>f1)?f2[i-1]:f1)+M[x[j]][2];
            f+=f2[i];
            if(f<bestf)
            {
                Swap(x[i],x[j]);
                Backtrack(i+1);
                Swap(x[i],x[j]);
            }
            f1 -= M[x[j]][1];
            f -= f2[i];
        }
    }
}
int Flow(int * * M,int n,int bestx[])
{
    int ub = INT_AMX;
    Flowshop X;
    X.x = new int [n+1];
    X.f2 = new int [n+1];
    X.M = M;
    X.n = n;
    X.bestf = ub;
    X.bestx = bestx;
    X.f1 = 0;
    X.f = 0;
    for(int i=0;i<=n;i++)
    {
        X.f2[i] = 0;
        X.x[i] i;
    }
    X.Backtrack(1);
    delete [] X x;
    delete [] X f2;
    return X.bestf;
}

实例代码:

代码语言:javascript
复制
#include <iostream>
using namespace std;
#define MAX 200
int* x1;//作业Ji在机器1上的工作时间;
int* x2;//作业Ji在机器2上的工作时间;

int number=0;//作业的数目;

int* xOrder;//作业顺序;
int* bestOrder;//最优的作业顺序;

int bestValue=MAX;//最优的时间;
int xValue=0;//当前完成用的时间;
int f1=0;//机器1完成的处理时间;
int* f2;//第i阶段机器2完成的时间;


void BackTrace(int k)
{
     if (k>number)
     {
          for (int i=1;i<=number;i++)
          {
             bestOrder[i]=xOrder[i];
          }
          bestValue=xValue;
     }
 else
 {
      for (int i=k;i<=number;i++)
      {
           f1+=x1[xOrder[i]];
           f2[k]=(f2[k-1]>f1?f2[k-1]:f1)+x2[xOrder[i]];
           xValue+=f2[k];
           swap(xOrder[i],xOrder[k]);
           if (xValue<bestValue)
           {
                BackTrace(k+1);
           }
           swap(xOrder[i],xOrder[k]);
           xValue-=f2[k];
           f1-=x1[xOrder[i]];
      }
  
 }
}
int main()
{
     cout<<"请输入作业数目:";
     cin>>number;
     x1=new int[number+1];
     x2=new int[number+1];
     xOrder=new int[number+1];
     bestOrder=new int[number+1];
     f2=new int[number+1];

     x1[0]=0;
     x2[0]=0;
     xOrder[0]=0;
     bestOrder[0]=0;
     f2[0]=0;

     cout<<"请输入每个作业在机器1上所用的时间:"<<endl;
     for (int i=1;i<=number;i++)
     {
      cout<<"第"<<i<<"个作业=";
      cin>>x1[i];
     }

     cout<<"请输入每个作业在机器2上所用的时间:"<<endl;
     for (i=1;i<=number;i++)
     {
      cout<<"第"<<i<<"个作业=";
      cin>>x2[i];
     }

     for (i=1;i<=number;i++)
     {
        xOrder[i]=i;
     }
     BackTrace(1);
     cout<<"最节省的时间为:"<<bestValue;
     cout<<endl;
     cout<<"对应的方案为:";
     for (i=1;i<=number;i++)
     {
         cout<<bestOrder[i]<<"  ";
     }
     return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2012-10-23 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档