前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >拓扑排序及其实际应用

拓扑排序及其实际应用

作者头像
用户1168362
发布2018-01-05 15:54:58
2.1K0
发布2018-01-05 15:54:58
举报
文章被收录于专栏:.net core新时代

  最近在做实际项目中遇到了一个问题,如何判断一个层级结构的图是否存在循环引用。刚开始想到了方法是用递归进行判断,后来想到大学学过的拓扑排序可以解决该问题,于是翻了下数据结构这本书,阅读了园友的文章,根据自己的理解写下了这篇随笔。

阅读目录

  • 拓扑排序介绍
  • 问题引入及算法实现
  • 本章总结

回到顶部

拓扑排序介绍

  百度百科定义:

  对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

  上面的定义看完可能不知道是什么意思,举两个实际的例子就明白了。

1.大学课程排序

大学课程的学习是有先后顺序的,C语言是基础,数据结构依赖于C语言,其它课程也有类似依赖关系。这样的一个课程安排是怎么实现的呢?

  2.VS项目编译顺序

   假设VS中有三个项目A,B,C,它们的关系如下图。VS编译器是如何判断三个项目的编译顺序的呢?

回到顶部

问题引入及算法实现

   这次实际项目中碰到的问题可以归纳为控件联动选择,即常见的省份,城市,地区联动。为了实现通用的下拉连dog,设计了一套表结构,最终保存数据如下。

     看到这里也许你不明白这个和拓扑排序能扯上什么关系,假如省份下拉又依赖于地区下拉,那这样就会形成一个死循环。为了避免这样的情况需要在数据保存时,校验是否存在闭环。

     下面给出,解决上述问题的两种算法。

1.递归判断

     步骤如下

      (1)找当前节点的父级节点(也可以叫依赖的节点)  

  (2)父级节点不为为空且不等于当前节点自己,则寻找父级节点对应的父级节点

      (3)重复1,2。最终找到的节点=自己 ,则存在闭环,否则不存在

代码实现

   首先定义了一个类似的结构   

代码语言:javascript
复制
    public class Node
    {
        /// <summary>
        /// 当前节点ID
        /// </summary>
        public int Key { get; set; }

        /// <summary>
        /// 父级节点ID
        /// </summary>
        public int? Parent { get; set; }
    }
代码语言:javascript
复制
/// <summary>
    /// 递归判断是否存在循环引用
    /// </summary>
    public class RecursionSort
    {
        /// <summary>
        /// 递归判断是否存在循环引用
        /// </summary>
          public  static bool CheckRecursion(List<Node> list)
        {
            foreach (var node in list)
            {
                if (RecursionSort.CheckRecursion(node.Key,node, list))
                {
                    return true;
                }
            }
            return false;
        }

        /// <summary>
        /// 递归判断是否存在循环引用
        /// </summary>
        /// <param name="list"></param>
        /// <returns></returns>
        private static bool CheckRecursion(int key,Node curNode, List<Node> list)
        {
            if (curNode.Parent == key)
            {
                return true;
            }
            //寻找父级节点对应的父级节点信息
            if (curNode.Parent != null)
            {
                Node pNode = list.Where(e => e.Key == curNode.Parent).FirstOrDefault<Node>();
                return CheckRecursion(key,pNode, list);
            }
            return false;
        }
    }
代码语言:javascript
复制
        static void Main(string[] args)
        {
            //递归判断
            List<Node> list = new List<Node>();
            list.Add(new Node { Key=1,Parent=2});
            list.Add(new Node { Key = 2, Parent = 1 });
            list.Add(new Node { Key = 3, Parent = 2 });
            Console.WriteLine(RecursionSort.CheckRecursion(list));
            Console.Read();
        }

2.拓扑排序

   步骤如下

        (1) 从有向图中选择一个出度为0(即不依赖任何其它节点)的顶点并且输出它。     (2) 从图中删去该顶点,并且删去该顶点的所有边。         (3) 重复上述两步,直到剩余的图中没有出度为0的顶点。

      我们来看一下上面举的VS项目编译顺序列子按照上述算法的演示过程

     第一步选择 C节点

      第二步选择 B节点

       至此完成了整个排序C,B,A 即先编译C项目,再编译B项目,最后编译A项目

    代码实现如下

代码语言:javascript
复制
    /// <summary>
    /// 拓扑节点类。
    /// </summary>
    public class TopologicNode<T>
    {
        /// <summary>
        /// 获取或设置节点的键值。
        /// </summary>
        public T Key { get; set; }

        /// <summary>
        /// 获取或设置依赖节点的键值列表。
        /// </summary>
        public List<T> Dependences { get; set; }
    }
代码语言:javascript
复制
 /// <summary>
    /// 拓扑排序类。
    /// </summary>
    public class TopologicSort
    {
        /// <summary>
        /// 拓扑顺序。
        /// </summary>
        /// <typeparam name="TKey">节点的键值类型。</typeparam>
        /// <param name="list">一组节点。</param>
        /// <returns>拓扑序列。</returns>
        /// <exception cref="InvalidOperationException">如果存在双向引用或循环引用,则抛出该异常。</exception>
        public static List<T> OrderBy<T>(List<TopologicNode<T>> list)
        {
            if (list == null)
            {
                throw new ArgumentNullException("参数空异常");
            }
            List<T> listResult = new List<T>();
            while (list.Count > 0)
            {
                //查找依赖项为空的节点
                var item = list.FirstOrDefault(c => c.Dependences == null || c.Dependences.Count == 0);
                if (item != null)
                {
                    listResult.Add(item.Key);

                    //移除用过的节点,以及与其相关的依赖关系
                    list.Remove(item);
                    foreach (var otherNode in list)
                    {
                        if (otherNode.Dependences != null)
                        {
                            otherNode.Dependences.Remove(item.Key);
                        }
                    }
                }
                else if (list.Count > 0)
                {
                    //如果发现有向环,则抛出异常
                    throw new InvalidOperationException("存在循环引用");
                }
            }
            return listResult;
        }
    }
代码语言:javascript
复制
 //拓扑排序
            //节点3依赖于2和1节点
            list.Add(new Node { Key = 3, Parent = 1 });

            List<TopologicNode<int>> listTopologicNode = new List<TopologicNode<int>>();
            //构建排序节点

            var group = (from p in list
                         group p by p.Key into g
                         select g);

            foreach (var g in group)
            {
                TopologicNode<int> node = new TopologicNode<int>();
                node.Key = g.Key;
                node.Dependences = new List<int>();
                foreach (Node value in g)
                {
                    if (value.Parent != null)
                    {
                        node.Dependences.Add(value.Parent.GetValueOrDefault());
                    }
                }
                listTopologicNode.Add(node);
            }

            try
            {
                List<int> result = TopologicSort.OrderBy<int>(listTopologicNode);
                result.ForEach(e => {
                    Console.WriteLine(e);
                });
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }

运行结果如下

回到顶部

本章总结

     本篇用到了Linq语法,如有不懂的可以到园里找找相关知识。后续我会专门写一篇关于Linq,函数委托的文章,敬请期待!第一篇写算法的随笔到此完成,拓扑排序的实际应用场景还有很多,最短路径等等。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2015-04-19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 拓扑排序介绍
  • 问题引入及算法实现
  • 本章总结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档