在训练神经网络的时候,通常在训练刚开始的时候使用较大的learning rate
, 随着训练的进行,我们会慢慢的减小learning rate
。对于这种常用的训练策略,tensorflow
也提供了相应的API
让我们可以更简单的将这个方法应用到我们训练网络的过程中。
接口
tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)
参数:
learning_rate
: 初始的learning rate
global_step
: 全局的step,与 decay_step
和 decay_rate
一起决定了 learning rate
的变化。
staircase
: 如果为 True global_step/decay_step
向下取整
更新公式:
decayed_learning_rate = learning_rate *
decay_rate ^ (global_step / decay_steps)
这个代码可以看一下 learning_rate 的变化趋势:
import tensorflow as tf
global_step = tf.Variable(0, trainable=False)
initial_learning_rate = 0.1 #初始学习率
learning_rate = tf.train.exponential_decay(initial_learning_rate,
global_step=global_step,
decay_steps=10,decay_rate=0.9)
opt = tf.train.GradientDescentOptimizer(learning_rate)
add_global = global_step.assign_add(1)
with tf.Session() as sess:
tf.global_variables_initializer().run()
print(sess.run(learning_rate))
for i in range(10):
_, rate = sess.run([add_global, learning_rate])
print(rate)
用法:
import tensorflow as tf
global_step = tf.Variable(0, trainable=False)
initial_learning_rate = 0.1 #初始学习率
learning_rate = tf.train.exponential_decay(initial_learning_rate,
global_step=global_step,
decay_steps=10,decay_rate=0.9)
opt = tf.train.GradientDescentOptimizer(learning_rate)
add_global = global_step.assign_add(1)
with tf.control_denpendices([add_global]):
train_op = opt.minimise(loss)
with tf.Session() as sess:
tf.global_variables_initializer().run()
print(sess.run(learning_rate))
for i in range(10):
_= sess.run(train_op)
print(rate)
https://www.tensorflow.org/api_docs/python/tf/train/exponential_decay