前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >tensorflow自定义op:work_shard

tensorflow自定义op:work_shard

作者头像
ke1th
发布2018-01-02 11:22:59
1.4K0
发布2018-01-02 11:22:59
举报
文章被收录于专栏:漫漫深度学习路

强行解释 work_shard

在学习 tensorflow 自定义 op 的时候碰到的,google 了一下,也没有找到详细的介绍,难道是姿势不对?? 通过看 了一些示例,这里打算强行解释一波。

概览

如果想用 work shard,首先 代码能够并行化计算。work shard 是一个代码并行化工具。不用自己头疼的写多线程代码了。

什么样的代码能够并行化计算 —> 每一个输出数据都能表示成相互无关的

work_shard 的最后一个参数就是要 shard 的 work, 这个 work 的签名为 void shard(int64 start, int64 limit),work_shard 就是将 (start, limit) 给划分成多块,然后 块给 一个线程来计算。

代码语言:javascript
复制
# 如何使用 work_shard
# 1. 包含头文件
# 2. 该用的地方用就行了
# 3. 链接的时候 g++ 会自动找到实现去链接的,不用操心。

代码

work_shard声明代码 地址

代码语言:javascript
复制
// work_sharder.h
#ifndef TENSORFLOW_UTIL_WORK_SHARDER_H_
#define TENSORFLOW_UTIL_WORK_SHARDER_H_

#include <functional>

#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/platform/types.h"

namespace tensorflow {

// Shards the "total" unit of work assuming each unit of work having
// roughly "cost_per_unit". Each unit of work is indexed 0, 1, ...,
// total - 1. Each shard contains 1 or more units of work and the
// total cost of each shard is roughly the same. The calling thread and the
// "workers" are used to compute each shard (calling work(start,
// limit). A common configuration is that "workers" is a thread pool
// with at least "max_parallelism" threads.
//
// "cost_per_unit" is an estimate of the number of CPU cycles (or nanoseconds
// if not CPU-bound) to complete a unit of work. Overestimating creates too
// many shards and CPU time will be dominated by per-shard overhead, such as
// Context creation. Underestimating may not fully make use of the specified
// parallelism.
//
// "work" should be a callable taking (int64, int64) arguments.
// work(start, limit) computes the work units from [start,
// limit), i.e., [start, limit) is a shard.
//
// REQUIRES: max_parallelism >= 0
// REQUIRES: workers != nullptr
// REQUIRES: total >= 0
// REQUIRES: cost_per_unit >= 0
void Shard(int max_parallelism, thread::ThreadPool* workers, int64 total,
           int64 cost_per_unit, std::function<void(int64, int64)> work);

}  // end namespace tensorflow

#endif  // TENSORFLOW_UTIL_WORK_SHARDER_H_

用到 Sharder 的地方(见代码片段最后) 完整代码地址

代码语言:javascript
复制
auto shard = [pooled_height, pooled_width, spatial_scale,
num_rois, batch_size, data_height, data_width, num_channels,
&bottom_data_flat, &bottom_rois_flat, &output, &argmax]
(int64 start, int64 limit) {
for (int64 b = start; b < limit; ++b)
{
  // (n, ph, pw, c) is an element in the pooled output
  int n = b;
  int c = n % num_channels;
  n /= num_channels;
  int pw = n % pooled_width;
  n /= pooled_width;
  int ph = n % pooled_height;
  n /= pooled_height;

  const float* bottom_rois = bottom_rois_flat.data() + n * 5;
  int roi_batch_ind = bottom_rois[0];
  int roi_start_w = round(bottom_rois[1] * spatial_scale);
  int roi_start_h = round(bottom_rois[2] * spatial_scale);
  int roi_end_w = round(bottom_rois[3] * spatial_scale);
  int roi_end_h = round(bottom_rois[4] * spatial_scale);

  // Force malformed ROIs to be 1x1
  int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);
  int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
  const T bin_size_h = static_cast<T>(roi_height)
  / static_cast<T>(pooled_height);
  const T bin_size_w = static_cast<T>(roi_width)
  / static_cast<T>(pooled_width);

  int hstart = static_cast<int>(floor(ph * bin_size_h));
  int wstart = static_cast<int>(floor(pw * bin_size_w));
  int hend = static_cast<int>(ceil((ph + 1) * bin_size_h));
  int wend = static_cast<int>(ceil((pw + 1) * bin_size_w));

  // Add roi offsets and clip to input boundaries
  hstart = std::min(std::max(hstart + roi_start_h, 0), data_height);
  hend = std::min(std::max(hend + roi_start_h, 0), data_height);
  wstart = std::min(std::max(wstart + roi_start_w, 0), data_width);
  wend = std::min(std::max(wend + roi_start_w, 0), data_width);
  bool is_empty = (hend <= hstart) || (wend <= wstart);

  // Define an empty pooling region to be zero
  float maxval = is_empty ? 0 : -FLT_MAX;
  // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
  int maxidx = -1;
  const float* bottom_data = bottom_data_flat.data() + roi_batch_ind * num_channels * data_height * data_width;
  for (int h = hstart; h < hend; ++h) {
    for (int w = wstart; w < wend; ++w) {
      int bottom_index = (h * data_width + w) * num_channels + c;
      if (bottom_data[bottom_index] > maxval) {
      maxval = bottom_data[bottom_index];
      maxidx = bottom_index;
      }
    }
  }
  output(b) = maxval;
  argmax(b) = maxidx;
  }
};

const DeviceBase::CpuWorkerThreads& worker_threads =
*(context->device()->tensorflow_cpu_worker_threads());
const int64 shard_cost =
num_rois * num_channels * pooled_height * pooled_width * spatial_scale;

// 用到 shard 的地方
Shard(worker_threads.num_threads, worker_threads.workers, output.size(), shard_cost, shard);

通过调用方法来分析Shard 声明中各参数的意义:

代码语言:javascript
复制
// 声明
void Shard(int max_parallelism, thread::ThreadPool* workers, int64 total,
           int64 cost_per_unit, std::function<void(int64, int64)> work);

// 调用
Shard(worker_threads.num_threads, worker_threads.workers, output.size(), shard_cost, shard);

// max_parallelism: 最大并行个数,通过调用的形式来看,一般是使用 本机的线程数。
// workers: 从声明来看,是代表的线程池。
// total: 从调用来看,像是 work 中 unit 的数量,即最外层 for 循环的数量。
// cost_per_unit: 对每个 unit 的 cpu 循环的一个估计。

// work: 一个可调用对象,work的调用应该是这样的 work(int64, int64)

Shard 的实现源码:地址 地址如果失效,就去 tensorflow/core/util/work_sharder.cc

将work 分块执行,[0, limit) 变成 [0,block_size), [block_size, 2*block_size) 这么一块一块。 num_shards = total * cost_per_unit / 10000 为了理解 cost_per_unit 可以只关心这一部分 从这个部分可以看出,如果cost_per_unit 的运算量很大的话,tensorflow 会多分几块,那么问题来了,分成多少是合适的呢? block_size = (total + num_shards - 1) / num_shards 。num_shards 要分成几块。

代码语言:javascript
复制
#include "tensorflow/core/util/work_sharder.h"

#include "tensorflow/core/lib/core/blocking_counter.h"
#include "tensorflow/core/platform/logging.h"

namespace tensorflow {

void Shard(int max_parallelism, thread::ThreadPool* workers, int64 total,
           int64 cost_per_unit, std::function<void(int64, int64)> work) {
  CHECK_GE(total, 0);
  if (total == 0) {
    return;
  }
  if (max_parallelism <= 1) {
    // Just inline the whole work since we only have 1 thread (core).
    work(0, total);
    return;
  }
  if (max_parallelism >= workers->NumThreads()) {
    workers->ParallelFor(total, cost_per_unit, work);
    return;
  }
  cost_per_unit = std::max(1LL, cost_per_unit);
  // We shard [0, total) into "num_shards" shards.
  //   1 <= num_shards <= num worker threads
  //
  // If total * cost_per_unit is small, it is not worth shard too
  // much. Let us assume each cost unit is 1ns, kMinCostPerShard=10000
  // is 10us.
  static const int64 kMinCostPerShard = 10000;
  const int num_shards =
      std::max<int>(1, std::min(static_cast<int64>(max_parallelism),
                                total * cost_per_unit / kMinCostPerShard));

  // Each shard contains up to "block_size" units. [0, total) is sharded
  // into:
  //   [0, block_size), [block_size, 2*block_size), ...
  // The 1st shard is done by the caller thread and the other shards
  // are dispatched to the worker threads. The last shard may be smaller than
  // block_size.
  const int64 block_size = (total + num_shards - 1) / num_shards;
  CHECK_GT(block_size, 0);  // total > 0 guarantees this.
  if (block_size >= total) {
    work(0, total);
    return;
  }
  const int num_shards_used = (total + block_size - 1) / block_size;
  BlockingCounter counter(num_shards_used - 1);
  for (int64 start = block_size; start < total; start += block_size) {
    auto limit = std::min(start + block_size, total);
    workers->Schedule([&work, &counter, start, limit]() {
      work(start, limit);        // Compute the shard.
      counter.DecrementCount();  // The shard is done.
    });
  }

  // Inline execute the 1st shard.
  work(0, std::min(block_size, total));
  counter.Wait();
}

}  // end namespace tensorflow
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 强行解释 work_shard
    • 概览
      • 代码
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档