前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow 图像预处理(一) 图像编解码,图像尺寸调整

TensorFlow 图像预处理(一) 图像编解码,图像尺寸调整

作者头像
chaibubble
发布2018-01-02 11:16:36
2.3K0
发布2018-01-02 11:16:36
举报
文章被收录于专栏:深度学习与计算机视觉

TensorFlow提供了几类图像处理函数,下面介绍图像的编码与解码,图像尺寸调整。

编码与解码

图像解码与编码:一张RGB三通道的彩色图像可以看成一个三维矩阵,矩阵中的不位置上的数字代表图像的像素值。然后图像在存储时并不是直接记录这些矩阵中的数字,而是经过了压缩编码。所以将一张图像还原成一个三维矩阵的过程就是解码的过程,反之就是编码了。其实如果大家熟悉opencv的话,imread和imwrite就是一个解码和编码的过程。 TensorFlow提供了常用图片格式的解码和编码操作,下面用一个jpg的图像演示:

代码语言:javascript
复制
import matplotlib.pyplot as plt
import tensorflow as tf


image_raw_data = tf.gfile.FastGFile('.//image//1.jpg','rb').read()

with tf.Session() as sess:
     img_data = tf.image.decode_jpeg(image_raw_data)
     print(img_data.eval())

     plt.imshow(img_data.eval())
     plt.show()

     #img_data = tf.image.convert_image_dtype(img_data,dtype = tf.float32)

     encoded_image = tf.image.encode_jpeg(img_data)
     with tf.gfile.GFile(".//image//3.jpg","wb") as f:
          f.write(encoded_image.eval())

其中: decode_jpeg函数为jpeg(jpg)图片解码的过程,对应的encode_jpeg函数为编码过程,编码后将图片重命名写入到指定的路径下。

图像尺寸调整 图像尺寸调整属于基础的图像几何变换,TensorFlow提供了几种尺寸调整的函数: tf.image.resize_images:将原始图像缩放成指定的图像大小,其中的参数method(默认值为ResizeMethod.BILINEAR)提供了四种插值算法,具体解释可以参考图像几何变换(缩放、旋转)中的常用的插值算法 tf.image.resize_image_with_crop_or_pad:剪裁或填充处理,会根据原图像的尺寸和指定的目标图像的尺寸选择剪裁还是填充,如果原图像尺寸大于目标图像尺寸,则在中心位置剪裁,反之则用黑色像素填充。 tf.image.central_crop:比例调整,central_fraction决定了要指定的比例,取值范围为(0,1],该函数会以中心点作为基准,选择整幅图中的指定比例的图像作为新的图像。

代码语言:javascript
复制
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np

image_raw_data = tf.gfile.FastGFile('.//image//1.jpg','rb').read()

with tf.Session() as sess:
     img_data = tf.image.decode_jpeg(image_raw_data)
     plt.imshow(img_data.eval())
     plt.show()


     resized = tf.image.resize_images(img_data, [100, 100], method=0)
     # TensorFlow的函数处理图片后存储的数据是float32格式的,需要转换成uint8才能正确打印图片。
     print("Digital type: ", resized.dtype)
     resized = np.asarray(resized.eval(), dtype='uint8')
     # tf.image.convert_image_dtype(rgb_image, tf.float32)
     plt.imshow(resized)
     plt.show()

     croped = tf.image.resize_image_with_crop_or_pad(img_data, 100, 100)
     padded = tf.image.resize_image_with_crop_or_pad(img_data, 500, 500)
     plt.imshow(croped.eval())
     plt.show()
     plt.imshow(padded.eval())
     plt.show()

     central_cropped = tf.image.central_crop(img_data, 0.5)
     plt.imshow(central_cropped.eval())
     plt.show()

原图:

resize_images(img_data, [100, 100], method=0):

resize_image_with_crop_or_pad(img_data, 100, 100):

resize_image_with_crop_or_pad(img_data, 500, 500):

central_crop(img_data, 0.5):

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-06-12 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档