题意:
XX村里有n个小屋,小屋之间有双向可达的道路相连,所构成的图是一棵树。通过连接aia_i号小屋和bib_i号小屋的道路i需要花费wiw_i的时间。你一开始在s号小屋。请处理以下Q个查询。 A:输出从当前位置移动到结点x所需要的时间。 B:将通过道路x所需的时间改为t。
所需知识点: RMQ, BIT 和 LCA,还好之前已经学过RMQ和BIT了,只需要了解了解LCA即可。
LCA : 最近公共祖先,如果是树形链表的表达结构,可以采用递归法,具体参考leetcode题: https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/
当然,如果给定邻接表该如何操作?《挑战》上给出了两种做法: 1. 基于二分搜索的算法,请自行参考《挑战》P328 2. 基于RMQ的算法
很容易理解,在dfs求解时,非叶子结点在vs中均出现了两次,这是因为非叶子结点在访问左孩子结束后,还需返回到当前结点,并继续搜索右孩子,利用上述性质,只需要知道任意两个结点首次被访问的时间戳,就可以求出它们的LCA,一定是在该区间内,深度最小的那个结点。
查询某个区间的最小值,可以使用RMQ实现log(n)\log(n)的查询。
此处,有些很重要的性质可以挖掘,比如vs的访问顺序已知,那么对于任意两个结点之间的路径,可以直接求出。
嘿,这就能够利用BIT高效更新了啊,VS中的每个结点与前一个结点可以看作是每一条边,那么完全可以把这些信息存入BIT中,那么每当要修改某条边时,能够快速查询到对应BIT的位置即可。而结点与结点之间的距离求解时,使用上述u,v之间的距离公式即可解决。
总结: RMQ用于求解LCA,有了LCA,可以快速算出u,v之间的距离(见代码),BIT能够快速更新每条边的值,且实现某区间内的求和。
代码如下:
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.StringTokenizer;
public class Main {
String INPUT = "./data/judge/201709/P2763.txt";
public static void main(String[] args) throws IOException {
new Main().run();
}
static final int MAX_V = 100001 + 16;
int N, Q, S;
int root;
int[] w;
List<Edge>[] g;
class Edge {
int id;
int to;
int cost;
Edge(int id, int to, int cost){
this.id = id;
this.to = to;
this.cost = cost;
}
}
class BIT {
static final int MAX_N = MAX_V * 2 + 16;
int[] BIT;
int n;
BIT(int n){
this.n = n;
BIT = new int[MAX_N];
}
void add(int i, int val) {
while (i <= n) {
BIT[i] += val;
i += i & -i;
}
}
long sum(int i) {
long s = 0;
while (i > 0) {
s += BIT[i];
i -= i & -i;
}
return s;
}
}
class RMQ {
int n_;
int[] dat;
int[] data;
RMQ(int N){
this.n_ = 1;
while (n_ < N) n_ *= 2;
dat = new int[2 * n_];
for (int i = 0; i < 2 * n_ - 1; ++i) dat[i] = -1;
}
RMQ(int[] data, int N){
this(N);
this.data = data;
for (int i = 0; i < N; ++i) {
update(i, i);
}
}
public void update(int k, int i) {
k += (n_ - 1);
dat[k] = i;
while (k > 0) {
k = (k - 1) / 2;
dat[k] = min(dat[2 * k + 1], dat[2 * k + 2]);
}
}
public int query(int k, int i, int j, int l, int r) {
if (j <= l || i >= r) return -1;
else if (i <= l && j >= r) {
return dat[k];
}
else {
int lch = 2 * k + 1;
int rch = 2 * k + 2;
int mid = (l + r) / 2;
int lf = query(lch, i, j, l, mid);
int rt = query(rch, i, j, mid, r);
return min(lf, rt);
}
}
public int min(int i, int j) {
if (i == -1 && j != -1) return j;
if (j == -1 && i != -1) return i;
if (i == -1 && j == -1) return -1;
return data[i] < data[j] ? i : j;
}
}
void read() {
N = ni();
Q = ni();
S = ni();
g = new ArrayList[MAX_V];
w = new int[N];
for (int i = 0; i < N; ++i) g[i] = new ArrayList<Edge>();
for (int i = 0; i < N - 1; ++i) {
int from = ni();
int to = ni();
int cost = ni();
from --;
to --;
g[from].add(new Edge(i, to, cost));
g[to].add(new Edge(i, from, cost));
w[i] = cost;
}
root = N / 2;
init(N);
int v = S - 1;
for (int i = 0; i < Q; ++i) {
int type = ni();
if (type == 0) {
int u = ni();
u --;
int p = lca(u, v);
out.println(bit.sum(id[v]) + bit.sum(id[u]) - bit.sum(id[p]) * 2);
v = u;
}
else {
int x = ni() - 1;
int c = ni();
bit.add(es[2 * x], c - w[x]);
bit.add(es[2 * x + 1], w[x] - c);
w[x] = c;
}
}
}
BIT bit;
RMQ rmq;
void init(int N) {
bit = new BIT(2 * N);
// 预处理 vs, depth, id 和 es
k = 0;
dfs(root, -1, 0);
rmq = new RMQ(depth, 2 * N);
}
int[] vs = new int[MAX_V * 2 - 1]; //DFS访问的顺序,每个结点至多被访问两次
int[] depth = new int[MAX_V * 2 - 1]; //结点的深度
int[] id = new int[MAX_V]; //各个顶点在vs中首次出现的下标
int[] es = new int[MAX_V * 2 - 1]; //边的下标(i * 2 + (叶子方向:0,根方向:1))
int k; // 当前访问的位置
void dfs(int v, int p, int d) {
id[v] = k;
vs[k] = v;
depth[k++] = d;
for (Edge e : g[v]) {
if (e.to != p) {
bit.add(k, e.cost);
es[e.id * 2] = k;
dfs(e.to, v, d + 1);
vs[k] = v;
bit.add(k, -e.cost);
es[e.id * 2 + 1] = k;
depth[k++] = d;
}
}
}
int lca(int u, int v) {
return vs[rmq.query(0, Math.min(id[u], id[v]), Math.max(id[u], id[v]) + 1, 0, rmq.n_)];
}
FastScanner in;
PrintWriter out;
void run() throws IOException {
boolean oj;
try {
oj = ! System.getProperty("user.dir").equals("F:\\java_workspace\\leetcode");
} catch (Exception e) {
oj = System.getProperty("ONLINE_JUDGE") != null;
}
InputStream is = oj ? System.in : new FileInputStream(new File(INPUT));
in = new FastScanner(is);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
read();
out.flush();
if (!oj){
System.out.println("[" + (System.currentTimeMillis() - s) + "ms]");
}
}
public boolean more(){
return in.hasNext();
}
public int ni(){
return in.nextInt();
}
public long nl(){
return in.nextLong();
}
public double nd(){
return in.nextDouble();
}
public String ns(){
return in.nextString();
}
public char nc(){
return in.nextChar();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
boolean hasNext;
public FastScanner(InputStream is) throws IOException {
br = new BufferedReader(new InputStreamReader(is));
hasNext = true;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
hasNext = false;
return "##";
}
}
return st.nextToken();
}
String next = null;
public boolean hasNext(){
next = nextToken();
return hasNext;
}
public int nextInt() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Integer.parseInt(more);
}
public long nextLong() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Long.parseLong(more);
}
public double nextDouble() {
if (next == null){
hasNext();
}
String more = next;
next = null;
return Double.parseDouble(more);
}
public String nextString(){
if (next == null){
hasNext();
}
String more = next;
next = null;
return more;
}
public char nextChar(){
if (next == null){
hasNext();
}
String more = next;
next = null;
return more.charAt(0);
}
}
static class D{
public static void pp(int[][] board, int row, int col) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
sb.append(board[i][j] + (j + 1 == col ? "\n" : " "));
}
}
System.out.println(sb.toString());
}
public static void pp(char[][] board, int row, int col) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
sb.append(board[i][j] + (j + 1 == col ? "\n" : " "));
}
}
System.out.println(sb.toString());
}
}
static class ArrayUtils {
public static void fill(int[][] f, int value) {
for (int i = 0; i < f.length; ++i) {
Arrays.fill(f[i], value);
}
}
public static void fill(int[][][] f, int value) {
for (int i = 0; i < f.length; ++i) {
fill(f[i], value);
}
}
public static void fill(int[][][][] f, int value) {
for (int i = 0; i < f.length; ++i) {
fill(f[i], value);
}
}
}
static class Num{
public static <K> void inc(Map<K, Integer> mem, K k) {
if (!mem.containsKey(k)) mem.put(k, 0);
mem.put(k, mem.get(k) + 1);
}
}
}