暂无搜索历史
统计性描述更为侧重单变量的描述,即描述X、X与X之间的关系,在通过X去描述Y的时候,我更关心X与Y间存在何种关系,此时便需要借助散点图去印证X与Y相关的内在一...
生活中经常会遇到各种形态的营销活动,例如小米的饥饿营销、海底捞式的口碑营销、PaPi酱式的内容营销、杜蕾斯的借势营销、京东的造势营销、百雀羚的病毒式营...
你可以这样回答,“带不带伞需要看具体的情况,如果今天烈日高照而且大妈儿子今天计划走路去上班恰好这个人非常抠门,那么他需要带上雨伞;否则,不需要带雨伞”...
分析架构中常常会涉及到主成分分析的环节,我常常会想,这部分主成分分析能不能用聚类分析去替代呢?结论是不能~
我理解的神经网络模型类似人的记忆,即人从出生到长大,接触、吸收外部信息并且将外部事物量化、统一化、概念化的过程,以此去指导一生的行为。
通常,数据挖掘领域 建模时 数据样本的填补方法与样本量的大小息息相关,一般,如果变量间取值关联程度较强,则模型填补的方式似乎更为常见:
为保证模型精准度,通常,构建模型前需要对样本进行缺失值、异常值、数据合并、数据离散化以及变量转换等多方面的处理,处理过程中,变量测量级别的确定贯穿其中。...
客户价值模型包含RFM模型,RFM模型仅仅是电商领域的客户价值模型,构建RFM模型的基本流程为:
数据分析中,不管是数据挖掘领域还是统计分析领域,都较为侧重验证性,验证性分析占据非常重要的主导地位。不同的是,99%的统计分析都是验证性分析,而数据挖掘...
一般统计的理论基础是概率论,而时间序列比较特殊,它的理论基础是随机过程。想透彻的理解时间序列,应该从根本、从随机过程的角度去理解时间序列。
相同的聚类分析中,距离的定义方式不同,得到的聚类结果也会不同,实际的数据分析工作中,为了便于解释结果,我更喜欢使用相似程度去定义聚类分析中的距离。
实际工作中,最常使用的当属回归类模型,其次便是客户画像。即便是评分模型也会涉及到客户画像,由于首富客户的违约特征与普通百姓不同,故需进行区分,信用分池即...
逻辑回归模型的几个衡量指标如洛伦兹曲线、ROC曲线、lift曲线等皆来源于混淆矩阵,如果针对同一个问题构建不同的模型,当进行模型间效果比较时,经常会用到...
连续变量压缩的基本思路为:建模之前使用主成分、因子分析或变量聚类的方法进行变量压缩,后续建模时使用向前法、向后法、逐步法或全子集法进一步进行变量...
WOE是一种证据权重,全称为weight of evidence,是变量压缩时我会采用的第二种方法。目前WOE变换也是信用评分模型中标准的处理流程、必不...
如果变量水平本身较多,那么哑变量的水平个数也会相应变多,这种情况下去构建模型肯定不行,需要将分类变量的水平进行压缩处理。
如下图所示,某市场产品客群的样本分布中,年龄为0-5岁与150-200岁即可判定为异常,一般单值异常需结合实际的业务进行判断。
构建评分模型过程中,建模属于流程性的过程,耗时不多,耗费大量精力的点在于缺失值的填充。缺失值填充的合理性直接决定了评分模型的成败。模型按照形式可划分为...
实际工作中,清晰的数据分析流程是保证模型质量的重要手段,属于工艺的范畴。数据分析流程没有统一固定的标准答案,只有业界领先的经验,需要结合实际业务的特点进...
目前以金融业为代表的各行各业使用的评分模型的原型都是基于美国FICO公司开发的评分模型,每个企业会将FICO的模型做些变形,从而形成自己需要的模型。
中化资本 | 高级风控经理 (已认证)
暂未填写学校和专业
暂未填写个人网址