暂无搜索历史
本文以交通事故预测为应用背景,提出了一个基于多源时空数据的多步、多粒度稀疏事件预测模型。其中集中归纳总结并缓解了时空稀疏问题、短期状态变化感知与多步预测问题。
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborho...
【前言】城市计算领域中,智能交通、智慧出行一直是一备受关注的话题,而交通事故在交通中扮演越来越着重要的角色,据WHO统计,已逐渐成为人类第8大杀手。传统的基础交...
https://www.lfd.uci.edu/~gohlke/pythonlibs/
对于研究生新生而言,刚开学,必不可少的就是接触阅读文献这样一件差事。通过阅读文献,一方面我们可以了解这个领域的专家/学者最近在研究什么,可以从中收获新的insi...
Meta学习的初衷十分令人着迷:不仅仅构建能够学习的机器, 更重要的是让它学会如何去学习。这也就意味着Meta学习得到的算法能够依据自己表现的反馈信号及时地调整...
通过时间、距离约束过滤路段 公交车的上下情况 分割段 行程内转移 CRF条件随机场 观察序列-隐藏序列 xi=(li,li+1) S={l1,l2,l3...
策略梯度的强化学习技术 使得训练定位小框位置变得可能,在每次探索中,如果分类模块能正确预测,给与正反馈,强化对这个位置的选择,反之则给负反馈。
一个Kernel(一个核KKD,设D个通道channel)就是一个对应的feature map. 第一个核会在每一个通道上都(卷积)走一遍,然后将对应每个通道的...
Hetero-ConvLSTM: A Deep Learning Approach to Traffic
多分类的逻辑回归- softmax模型 word2vec:词向量 one-hot representation 对应位置为1,但不能表达词之间的关系 本质...
tf.Variable(tf.random_normal([2,3],stddev=2)) 通过满足正态分布的随机数来初始化神经网络中的参数是一个常用方法。
空间层次: 划分街道 不同区域 城市的区域、街道等这些地理信息里都蕴藏着明确的多层次的语义信息
output = np.reshape(aa, [-1,5]) -1表示一个占位符,分为5列。
Python是一种面向对象的解释型计算机程序设计语言,具有丰富和强大的库,使用其开发产品快速高效。
1、 选择性搜索:方法:滑动窗口,规则块(利用约束进行剪枝)、选择性搜索(自底向上合并相邻的重叠区域) 一步步计算相似度 并且合并、剔除相似度的高的
1.变为rgb通道: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 2.变为灰度图: gray = cv2.cvt...
1.LeNet-5: 每一个卷积核都会形成一个特征图,3个通道则是每个通道是不同的卷积核,但是最后是将三通道的卷积值相加,最后变成一个通道,所以5564的卷积核...
一、weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight dec...
Openface人脸识别的原理与过程: https://zhuanlan.zhihu.com/p/24567586 原理可参考如下论文: 《OpenFace:...
暂未填写公司和职称
暂未填写个人简介
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市