暂无搜索历史
在越来越多的领域中机器学习模型已开始需要更高的标准, 例如模型预测中公司需要对模型产生的任何虚假预测负责。有了这种转变,可以说模型的可解释性已经比预测能力具有更...
第一个问题也是从知乎的这个问题开始: 因果推断(causal inference)是回归(regression)问题的一种特例吗?
本文介绍shap原理,并给出一个简单的示例揭示shap值得计算过程; 然后介绍如何将shap值转化为我们更容易理解的概率。
特征选择和超参数调整是每个机器学习任务中的两个重要步骤。大多数情况下,它们有助于提高性能,但缺点是时间成本高。参数组合越多,或者选择过程越准确,持续时间越长。这...
如何让复杂的模型具备可解释性,SHAP值是一个很好的工具,但是SHAP值不是很好理解,如果能将SHAP值转化为对概率的影响,看起来就很舒服了。先前阿Sam也写过...
第一篇主要把SHAP值的各类图表操作方式进行展示: 机器学习模型可解释性进行到底 —— SHAP值理论(一)
最近在系统性的学习AUTOML一些细节,本篇单纯从实现与解读的角度入手, 因为最近SHAP版本与之前的调用方式有蛮多差异,就从新版本出发,进行解读。
暂未填写公司和职称
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市
TA 很懒,什么都没有留下╮(╯_╰)╭