MCP(Model Context Protocol,模型上下文协议) ,2024年11月底,由 Anthropic 推出的一种开放标准,旨在统一大型语言模型(...
BERT模型在处理罕见单词时,主要通过以下几个关键步骤和机制来实现: 分词方法: BERT采用的是WordPiece分词方法,这种方法可以将单词划分为更小的子词...
喷泉模型是一种以用户需求为动力,以对象为驱动的模型,主要用于采用对象技术的软件开发项目。该模型认为软件开发过程自下而上周期的各阶段是相互迭代和无间隙...
1970年温斯顿•罗伊斯(Winston Royce)提出了著名的“瀑布模型”,直到80年代早期,它一直是唯一被广泛采用的软件开发模型。 瀑布模型核心思想...
随着人工智能技术的飞速发展,AI 大模型在诸多领域展现出了强大的能力。然而,要充分发挥其潜力,正确的使用方法至关重要。
在之前的conda环境中安装新的本次上课需要的几个包:(建议先不要全都安装上,很容易后面出现包导入失败,可以运行到哪个代码缺少模块再开始安装~)
论文介绍了一种名为 UniRepLKNet 的新型大核卷积神经网络(ConvNet),它在图像识别、音频、视频、点云、时间序列等多种模态的任务上表现出色,展示了...
Reward Model(奖励模型)是近年来在深度学习和强化学习领域广泛应用的一种技术,特别是在生成式模型(如大型语言模型)和强化学习(RL)结合的场景中,...
GraphRAG索引消耗Token巨大,所以你可能会问?新增文件后,我之前的文件会不会重新索引一次啊?什么情况下会利用缓存呢?本文带你一探究竟。
文章提出了一种名为 Large Selective Kernel Network(LSKNet)的新型网络架构,专门用于遥感图像中的目标检测任务。LSKNet ...
北京中科特瑞 | 大数据工程师 (已认证)
的三个维度:质量、规模、多样性,所以我们会说”数据是一切“,也会说”Good Data Is All You Need“,当然也会唠叨“垃圾进,垃圾出”(gar...
在当前人工智能潮流中,RAG 技术备受关注,诸如 RAGFlow、Qanything、Dify、FastGPT 等 RAG 引擎逐渐受到广泛关注。在这些引擎的背...
VanillaNet,是一种强调简洁性和优雅设计的新型神经网络架构。VanillaNet 通过避免深度结构、跳过连接和复杂的操作(如自注意力机制),实现了在计算...
在机器学习中,集成学习(Ensemble Learning)是通过将多个学习器的预测结果结合起来,从而提升模型的性能。集成方法有很多种,其中 堆叠集成(Sta...
我们前面部署过Win版本,也部署过Linux版本,也部署过单机版本,也部署过集群版,中途采用过多个模型,那这个模型到底是什么,我能选择什么模型呢?什么是蒸馏版,...
摘要:DeepSeek Model Zoo 是一个集多种先进预训练模型于一体的宝库,涵盖自然语言处理(NLP)、计算机视觉(CV)和语音等多个领域。这些模型在各...
前面一篇文章介绍了《从0开发大模型之DeepSeek的GRPO》,并且实现了一个简单版本的 GRPO 代码,不过从工程领域来看,并没有复现DeepSeek-R1...
继续《从0开发大模型》系列文章,上一篇用全量数据做微调,训练时间太长,参数比较大,但是有一种高效的微调方式LoRA。
论文提出了一个全卷积掩码自编码器框架和一个新的全局响应归一化(Global Response Normalization, GRN)层,用于增强 ConvNeX...
Model Context Protocol (MCP) 是一种由 Anthropic 开发的开放标准,旨在解决 AI 应用与外部数据源和工具集成中的挑战。在当...