全文链接:http://tecdat.cn/?p=31268
目前主流的轻量化路面平整度检测技术方案为:使用车载加速度传感器采集车辆在路面上行驶时的竖向振动数据,并按照每100米计算竖向振动数据统计指标:均方根值RMS,并建立RMS与路面平整度指标:IRI之间的回归模型。检测前需要将车辆行驶至标准路段(即已知IRI真值的路段)上来回行驶对传感器进行标定,完成标定后驾驶车辆前往待检测路段进行平整度检测。
目前该技术方案的难点在于,对于同一IRI值的路面,若驾驶同一车辆以不同的行驶速度驶过,测得的振动数据统计指标也会不同,即车辆行驶速度是影响检测结果的主要因素之一。在标定工作中,车辆会被要求已恒定速度行驶进行标定,而实际测量时,车辆的速度往往会随道路交通状况、路况、天气等因素无法维持恒定的速度,导致车辆在检测过程中时的车辆行驶速度时快时慢,严重影响检测结果精度。因此,对检测数据结果进行速度修正(即将车辆某一检测速度下的测量值转换成当量速度下的测量值),是一件急迫且必需的事情。
解决方案
任务目标
基于不同车速下的平整度检测车辆振动数据结果,探究车速与检测结果之间的关系,根据此关系进行速度修正,将不同车速下的检测结果转换成当量速度下的检测结果。
使用到的工具 / 语言
Matlab、Python、Mysql、Navicat。
数据 获取
平整度检测车辆每天会在上海外环高速固定某一路段上进行检测,检测数据(包括振动加速度数据、GPS定位数据、图像数据等)会定时上传至数据库内,需要从数据库中将检测数据批量下载至本地进行分析,其中,需要下载的数据表包括acc表、gps表、stake_info表。
图1 MySQL数据库中数据
(a)
(b)
图2 从数据库抓取数据Python脚本(部分)
编写python脚本从数据库中抓取指定时间的数据,脚本中包括部分mysql语句用于筛选数据。使用表关联命令将acc与gps表以时间为key关联起来,并保存至本地。共从数据库中抓取57天检测数据用于后续分析。
数据清洗
将57天车辆轨迹散点(红)画于图中,同时标注待检测路段桩号点(蓝),发现检测车辆并不是完全按照预定路线进行检测,有诸多路段是多检路段,将影响后续计算结果。将相邻桩号点连接形成若干个线段。对于车辆每一个轨迹散点,找到离该点最近的桩号线段,并计算该点到桩号线段的距离,设定阈值,将阈值外的轨迹散点剔除,保留阈值范围内轨迹散点(蓝)。
图3 检测车辆轨迹散点与桩号点
(横坐标:经度,纵坐标:纬度)
此外,还包括的数据预处理包括加速度数据去均值与车辆轨迹散点桩号重计算。对车辆每一个轨迹散点的桩号进行修正。
领取专属 10元无门槛券
私享最新 技术干货