这个包会调用WinBUGS软件来拟合模型,后来的JAGS软件也使用与之类似的算法来做贝叶斯分析。然而JAGS的自由度更大,扩展性也更好。近来,STAN和它对应的R包rstan一起进入了人们的视线。STAN使用的算法与WinBUGS和JAGS不同,它改用了一种更强大的算法使它能完成WinBUGS无法胜任的任务。同时Stan在计算上也更为快捷,能节约时间。
相关视频
例子
设Yi为地区i=1,…,ni=1,…,n从2012年到2016年支持率增加的百分比。我们的模型
式中,Xji是地区i的第j个协变量。所有变量均中心化并标准化。我们选择σ2∼InvGamma(0.01,0.01)和α∼Normal(0100)作为误差方差和截距先验分布,并比较不同先验的回归系数。
加载并标准化选举数据
选举数据的探索性分析
rstan中实现
统一先验分布
如果模型没有明确指定先验分布,默认情况下,Stan将在参数的合适范围内发出一个统一的先验分布。注意这个先验可能是不合适的,但是只要数据创建了一个合适的后验值就可以了。
rjags中实现
用高斯先验拟合线性回归模型
在JAGS中编译模型
从后验预测分布(PPD)和JAGS预测分布绘制样本
请注意,PPD密度比JAGS预测密度略宽。这是考虑β和σ中不确定性的影响,它解释了JAGS预测的covarage略低的原因。但是,对于这些数据,JAGS预测的覆盖率仍然可以。
领取专属 10元无门槛券
私享最新 技术干货