全文链接:http://tecdat.cn/?p=30647
多市场的多维广义自回归条件异方差模型及其在不同条件下的扩展与变形,它们不仅包含了单变量的波动特性,而且很好的描述了不同变量间的相互关系。所以,多维GARCH模型为分析金融市场的相互影响提供了有力的工具。
我们围绕多变量GARCH技术进行一些咨询,帮助客户解决独特的业务问题。本文涉及多变量GARCH模型的构建。为此,请考虑以下模型
BEKK
CCC-GARCH 和 DCC-GARCH
GO-GARCH
BEKK
BEKK(1,1)具有以下形式:
下图显示了具有上述参数的模拟序列:
BEKK 模型的调整通常计算成本很高,因为它们需要估计大量参数。在本节中,我们将使用该包来估计上一节中模拟多变量序列的参数。
对于 BEKK 模型(1,1) 的调整,我们使用以下语法
估计数由以下公式给出:
CCC-GARCH和DCC-GARCH
对于模拟过程,我们将使用相同的包估计参数,函数 .我们有两个模拟序列,然后我们假设它们遵循 CCC-GARCH(1,1) 以下过程
估算结果为:
DCC-GARCH
DCC-GARCH 模型是 CCC-GARCH 情况的推广,也就是说,我们有 R matris 不一定是固定的,也就是说它随时间变化:
模拟示例
为了模拟 DCC-GARCH 过程,我们考虑比较性能。
领取专属 10元无门槛券
私享最新 技术干货