首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

大数据发现模式vs.生产模式

当用户在处理大数据时,往往也会谈论他们对于商业智能工具所需的功能,通常最终会根据与高级分析技术或分析模式相关的两个主题来描述他们的需求。

当用户在处理大数据时,往往也会谈论他们对于商业智能工具所需的功能,通常最终会根据与高级分析技术或分析模式相关的两个主题来描述他们的需求。这些可以概括如下:

·发现模式:探索和实验-询问关于未知数据的新业务问题。

·生产模式:监控和调整-从被理解的数据中提供可信的答案。

在此讨论这两种分析模式,它们之间的差异,以及它们如何协同工作,以便企业更好地进行决策和创新业务。在为大数据环境评估新的和现有的商业智能工具时,也可以使用这些准则。

在详细分析这些分析模式的不同之处之前,人们应该注意到它们是高度互补的,并且总是协同工作。在通常情况下,在发现模式下的努力产生的新见解在生产模式下开始运行。例如,在发现模式中,在线零售商开发了一种根据其社交媒体偏好对潜在客户进行细分和评分的新方法。而在生产模式下,对新客户群体内的采购行为进行监控,以了解有效性,从而可以相应调整细分策略。

相反,人们在生产模式中学到的东西会产生新的问题,需要在操作之前首先需要在发现模式下进行原型设计的新数据。在上面的例子中,商家决定的细分市场需要增加一些最近可用的数据。在这种情况下,需要重新进入发现模式,以决定如何最好地将这些数据合并到分割模型中。

考虑到这些分析模式的定义以及它们是如何协同工作的,人们有必要关注它们之间的差异,因为这驱使商业智能工具需要不同的产品功能集。

为了帮助解释这些差异,将从四个不同的角度来看待分析模式。这些是:

·推动分析需求的组织因素

·正在开发的应用程序和功能的类型

·对于数据的要求

·所需的技术环境

以下是分析模式在这些类别中的不同之处:

商业智能工具应该提供产品功能来实现这两种分析模式。现代商业智能工具非常重视分析生命周期的全部范围,这通常是从发现模式开始,然后再进入生产模式(随着时间的推移,将反复回到发现模式),特别是当组织旨在通过对大数据进行分析来提供全新的创新时。这些类型的项目通常很少或根本不了解需求,而不需要事先了解数据源和结构。

组织在发现模式和生产模式之间切换时,不必采用商业智能工具。在数据和用户数量之间不应该有任何人为的权衡,例如,现代商业智能工具应该具备处理这两种分析场景的基本能力。

那么现有的商业智能工具能否经受住这些考验?

版权声明:本文为企业网D1Net编译,转载需注明出处为:企业网D1Net,如果不注明出处,企业网D1Net将保留追究其法律责任的权利。

(来源:企业网D1Net)

企业网D1net已推出企业应用商店(www.enappstore.com),面向企业级软件,SaaS等提供商,提供陈列,点评功能,不参与交易和交付。现可免费入驻,入驻后,可获得在企业网D1net 相应公众号推荐的机会。欢迎入驻。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180202B0FJ2200?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券