首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

2018年的人工智能和深度学习将会如何发展?

随着我们的日常生活与各种各样的技术越来越紧密地交织在一起,有时候,似乎未来已经到来。然而,技术仍在不断发展,人工智能(AI)已经占据了这一领域的中心地位。在许多前进力量的支持下,人工智能继续激发公众对未来的想象。

最常见的人工智能构成部分,以及人工智能家族中的“聪明之星”,都是“深度学习”。深度学习是一种数据学习的模式,近年来改进了长期以来的预测准确性标准。

除了传统的预测建模之外,它还在语音识别和计算机视觉领域有突出贡献。然而,随着我们迎接新年的到来,事情将变得更加有趣。让我们来看看2018年的深度学习以及更广泛的人工智能的情况。

卷积神经网络(几乎)无处不在

卷积神经网络是一种复杂的学习模型,它的优点是需要对数据进行最少的预处理或“清理”。主要被应用于“解决”视觉图像分类和处理,目前开始应用于更多的案例。

其理念是,视觉世界是合成的,因此图像可以被分解成最基本的特征。例如,一个风景的图像由各种各样的物体组成;这些物体由轮廓和线条组成,而这些线条又由像素组成。

Covnets能够识别这些成分,并创建分层的抽象世界概念,使各种识别任务变得更容易。

(以鸟的形象在图像中识别物体的卷积神经网络。)

目前,Facebook的照片标签和面部识别功能都使用了Covnets。在2018年,我们可以预计,Covnets将更广泛的应用于自动驾驶领域,特斯拉的Model X已经在使用Covnets来实现自动驾驶的相关功能。

人工智能将加强数据安全

虽然机器学习和深度学习模型具有前所未有的预测精度,但有些目前仍容易受到质疑。例如,在受监督的机器学习中,模型学习标记数据的某些特征,训练和测试数据被假定来自相同的数据分布。

如果数据在这个假设中失真,那么模型的预测精度就会受到很大的影响。以垃圾邮件过滤为例——如果将随机文本和图像添加到消息中,消息可能会绕过垃圾邮件检测系统。这就是为什么你的收件箱里塞满了垃圾邮件,尽管有一个系统可以阻止它。

安全部门巨头McAfee公司认为,将数字安全考虑在内,2018年勒索软件和其他数字威胁(比如对全球社会造成恐慌的“WannaCry”)越来越多地利用机器学习和深度学习技术。具体来说,这些模型将威胁到检测模型,从检测模型的防御反应中学习,并利用发现的漏洞来破坏检测模型,其速度比防御者修补漏洞的速度更快。

在过去的两三年里,人工智能和深度学习在公共领域出现了爆炸式的增长,推出了一些令人兴奋的产品。在2018年和未来几年,它们将越来越多地出现在我们的日常互动中,尤其是在移动应用领域。

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180104B0YBPE00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券