今天,TensorFlow 官方博客发布了 TensorFlow Graph Neural Networks(TensorFlow GNN)库 ,这个库使得用户在使用 TensorFlow 时能够轻松处理图结构数据。
此前,TensorFlow GNN 的早期版本已经在谷歌的各种应用中使用,包括垃圾邮件和异常检测、流量估计、YouTube 内容标记等。特别是,考虑到谷歌数据种类繁多,该库在设计时就考虑到了异构图。
项目地址:https://github.com/tensorflow/gnn
无论是在现实世界中,还是在我们设计的系统中,图无处不在。一组对象或是不同的人以及他们之间的联系,通常可以用图来描述。通常情况下,机器学习中的数据是结构化或关系型的,因此也可以用图来描述。虽然 GNN 的基础研究已经有几十年的历史,但近几年才取得一些进展,包括在交通预测、假新闻检测、疾病传播建模、物理模拟,以及理解为什么分子会有气味等。
图可以为不同类型的数据进行关系建模,包括网页(左)、社交关系(中)或分子(右)。
怎样定义图呢?简单来讲,图表示一组实体(节点或顶点)之间的关系(边)。我们可以描述每个节点、边或整个图,从而将信息存储在图的每一部分中。此外,我们可以赋予图边缘方向性来描述信息或信息流。
GNN 可以用来回答关于这些图的多个特征问题。GNN 可用于节点级任务,对图的节点进行分类,并预测图中的分区和相关性,类似于图像分类或分割。最后,我们可以在边缘级别使用 GNN 来发现实体之间的连接。
TF-GNN(TensorFlow GNN) 提供了在 TensorFlow 中实现 GNN 模型的构建块。除了建模 API 之外,该库还为处理图数据提供了可用工具,包括基于张量的图数据结构、数据处理 pipeline 和一些供用户快速入门的示例模型。
TF-GNN 工作流程组件
TF-GNN 库的初始版本包含许多实用程序和功能,供初学者和有经验的用户使用,包括:
下面示例使用 TF-GNN Keras API 构建了一个模型,该模型可以根据观看内容和喜欢的类型向用户推荐电影。
完成这项任务使用 ConvGNNBuilder 方法来指定边的类型和节点配置,即对边使用 WeightedSumConvolution(定义如下):
import tensorflow as tf import tensorflow_gnn as tfgnn # Model hyper-parameters: h_dims = {'user': 256, 'movie': 64, 'genre': 128} # Model builder initialization: gnn = tfgnn.keras.ConvGNNBuilder( lambda edge_set_name: WeightedSumConvolution(), lambda node_set_name: tfgnn.keras.layers.NextStateFromConcat( tf.keras.layers.Dense(h_dims[node_set_name])) ) # Two rounds of message passing to target node sets: model = tf.keras.models.Sequential([ gnn.Convolve({'genre'}), # sends messages from movie to genre gnn.Convolve({'user'}), # sends messages from movie and genre to users tfgnn.keras.layers.Readout(node_set_name="user"), tf.keras.layers.Dense(1) ])
有时我们希望 GNN 性能更强大,例如,在上个示例中,我们可能希望模型在给出推荐电影时可以同时给出权重。下面代码片段中定义了一个更高级的 GNN,它带有自定义图卷积,以及带有权重边。下面代码定义了 WeightedSumConvolution 类可以将边值池化为所有边的权重总和:
class WeightedSumConvolution(tf.keras.layers.Layer): """Weighted sum of source nodes states.""" def call(self, graph: tfgnn.GraphTensor, edge_set_name: tfgnn.EdgeSetName) -> tfgnn.Field: messages = tfgnn.broadcast_node_to_edges( graph, edge_set_name, tfgnn.SOURCE, feature_name=tfgnn.DEFAULT_STATE_NAME) weights = graph.edge_sets[edge_set_name]['weight'] weighted_messages = tf.expand_dims(weights, -1) * messages pooled_messages = tfgnn.pool_edges_to_node( graph, edge_set_name, tfgnn.TARGET, reduce_type='sum', feature_value=weighted_messages) return pooled_messages
请注意,即使卷积是在只考虑源节点和目标节点的情况下编写的,TF-GNN 仍可确保它适用并可以无缝处理异构图(具有各种类型的节点和边)。
这是目前安装 tensorflow_gnn 的唯一方法。强烈建议使用虚拟环境。
Clone tensorflow_gnn:
$> git clone https://github.com/tensorflow/gnn.git tensorflow_gnn
安装 TensorFlow:
$> pip install tensorflow
安装 Bazel:Bazel 需要构建包的源代码。安装步骤请参考:https://docs.bazel.build/versions/main/install.html
安装 GraphViz:这个包使用 GraphViz 作为可视化工具,安装因操作系统而异,例如 Ubuntu:
$> sudo apt-get install graphviz graphviz-dev
安装 tensorflow_gnn:
$> cd tensorflow_gnn && python3 -m pip install .
领取专属 10元无门槛券
私享最新 技术干货