首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python常用模块详解

什么是模块

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。但其实import加载的模块分为四个通用类别:

1 使用python编写的代码(.py文件)

2 已被编译为共享库或DLL的C或C++扩展

3 包好一组模块的包

4 使用C编写并链接到python解释器的内置模块

常用模块

下面列举python的常用模块

collections模块

在内置数据类型(dict、list、set、tuple)的基础上, collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple

我 们知道 可以表示不变集合,例如,一个点的二维坐标就可以表示成:

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时, 就派上了用场:

类似的,如果要用坐标和半径表示一个圆,也可以用 定义:

deque双端队列

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

d eque 除了实现list的 和 外,还支持 和 ,这样就可以非常高效地往头部添加或删除元素。

OrderedDict有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用 :

注意, 的Key会按照插入的顺序排列,不是Key本身排序:

defaultDict

tip:使用 时,如果引用的Key不存在,就会抛出 。如果希望key不存在时,返回一个默认值,就可以用

defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值

counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

时间模块

和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。

表示时间的三种方式

在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:

(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

(2)格式化的时间字符串(Format String): ‘1999-12-06’

(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)

python中表示时间的几种格式:

小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

几种时间格式的转换

#时间戳-->结构化时间

#time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致

#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间

>>>time.gmtime(1500000000)

time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)

>>>time.localtime(1500000000)

time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)

#字符串时间-->结构化时间

#time.strptime(时间字符串,字符串对应格式)

>>>time.strptime("2017-03-16","%Y-%m-%d")

time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)

>>>time.strptime("07/24/2017","%m/%d/%Y")

time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)

import time

true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))

time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))

dif_time=time_now-true_time

struct_time=time.gmtime(dif_time)

print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,

struct_time.tm_mday-1,struct_time.tm_hour,

struct_time.tm_min,struct_time.tm_sec))

计算时间差random模块

生成随机验证码

sys模块

sys模块是与 python解释器交互的一个接口

异常处理和status

序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?

现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。

但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。

你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?

没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,但是你要怎么把一个字符串转换成字典呢?聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。

eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。

BUT!强大的函数有代价。安全性是其最大的缺点。

想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。

而使用eval就要担这个风险。

所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

为什么要序列化

序列化的目的

1、以某种存储形式使自定义对象持久化;

2、将对象从一个地方传递到另一个地方。

3、使程序更具维护性。

json

Json模块提供了四个功能:dumps、dump、loads、load

list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]

str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型

print(type(str_dic),str_dic) # [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]

list_dic2 = json.loads(str_dic)

print(type(list_dic2),list_dic2) # [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

loads和dumps

pickle

用于序列化的两个模块

json,用于字符串 和 python数据类型间进行转换

pickle,用于python特有的类型 和 python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。

shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

作者:古墓派掌门

转载请注明出处

http://www.cnblogs.com/qflyue/p/8259772.html?utm_source=tuicool&utm_medium=referral

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20180111A0FB1I00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券