首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python利用imshow制作自定义渐变填充柱状图/colorbar

1. 目的

在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow() 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic’ 可以很好的做出渐变效果。

2. 代码

# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020

@author: fya"""

import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mpl

fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围

a = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅print(a.shape)

clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层ax.yaxis.tick_right() #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.show()fig.savefig('colorbar.tif',dpi=600,format='tif')print('Done!')

#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)

#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)

#ax.set_aspect('auto')#plt.show()

代码2,渐变色分100段

# -*- coding: utf-8 -*-"""Created on Wed Dec 9 10:36:54 2020

@author: fanyiang"""

import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport os

fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)

#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals() dfvalue=locals() for i in range(1,101): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe df=dfvalue['df'+str(i)] df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去df3=pd.read_csv('temp.csv',header=None)#读取csvdf3.columns=['序号','x','y']#column命名,第一列废弃df3=df3.drop('序号',axis=1)#删除第一列a=np.array(df3) #转arrayprint(df3.head())

#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))

print(a)

clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层ax.yaxis.tick_right() #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.show()fig.savefig('colorbar.tif',dpi=600,format='tif')os.remove("temp.csv") #删除临时的csv文件print('Done!')

#N = 10#x = np.arange(N) + 0.15#y = np.random.rand(N)

#width = 0.4#for x, y in zip(x, y): #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)

#ax.set_aspect('auto')#plt.show()

代码3,更改方法2中要暂时存到dataframe的问题

# -*- coding: utf-8 -*-"""Created on Fri Dec 11 10:40:53 2020

@author: fanyiang"""

import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.colors import ListedColormap,LinearSegmentedColormapimport matplotlib as mplimport pandas as pdimport os

fig, ax = plt.subplots(dpi=96)ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)

#a = np.array([[1, 1], #[2, 2], #[3, 3], #[4, 4], #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅avalue=locals() a=[[1,1]] for i in range(2,1001): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组print(a) clist=['white','blue'] #线性变化颜色由上面array值 小到大clist2=['red','white']newcmp = LinearSegmentedColormap.from_list('chaos',clist)newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)

plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层ax.yaxis.tick_right() #纵坐标移到右边ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示frame.spines['top'].set_visible(False) #上框线不显示frame.spines['bottom'].set_visible(False)frame.spines['right'].set_visible(False)frame.spines['left'].set_visible(False)plt.xticks([]) #x坐标不要

plt.show()fig.savefig('colorbar.tif',dpi=600,format='tif')#os.remove("temp.csv") #删除临时的csvprint('Done!')

注:该方法主要改变在于

a=[[1,1]] for i in range(2,1001): avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细 a=np.vstack((a,avalue['a'+str(i)])) #直接用vstack来vertical叠加数组

3. 代码

效果1

效果2&3

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20201213A0CB0P00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券