随着业务发展,单体系统逐渐无法满足业务的需求,分布式架构逐渐成为大型互联网平台首选。伴随而来的问题是,本地事务方案已经无法满足,分布式事务相关规范和框架应运而生。
在这种情况下,大型厂商根据分布式事务实现规范,实现了不同的分布式框架,以简化业务开发者处理分布式事务相关工作,让开发者专注于核心业务开发。
Seata就是这么一个分布式事务处理框架,Seata是由阿里开源,前身为Fescar,经过品牌升级变身Seata。
事务:一个程序执行单元,是用户定义的一组操作序列,需要满足ACID属性。
本地事务:事务由本地资源管理器管理。
分布式事务:事务的操作位于不同的节点。
分支事务:在分布式事务中,由资源管理器管理的本地事务。
全局事务:一次性操作多个资源管理器完成的事务,由一组分支事务组成。
对于本地事务,可以借助DBMS系统来实现事务的管理,但是对于分布式事务,它就无能为力了。对于分布式事务,目前主要有2种思路:XA协议的强一致规范以及柔性事务的最终一致性规范。
XA是基于2阶段提交协议设计的接口标准,实现了XA规范的资源管理器就可以参与XA全局事务。应用承担事务管理器TM工作,数据库承担资源管理器RM工作,TM生成全局事务id,控制RM的提交和回滚。
该规范主要有3种实现方式,TCC、MQ事务消息、本地消息表。(还存在其他一些不常用实现方式如Saga)。
TCC:try/confirm/cancel,在try阶段锁定资源,confirm阶段进行提交,资源锁定失败执行cancel阶段释放资源。
MQ事务消息:前提消息系统需要支持事务如RocketMQ,在本地事务执行前,发送事务消息prepare,本地事务执行成功,发送事务消息commit,实现分布式事务最终一致性。如果事务消息commit失败,RocketMQ会回查消息发送者确保消息正常提交,如果步骤5执行失败,进行重试,达到最终一致性。
本地消息表:跟MQ事务消息类似,区别在于MQ不支持事务消息,需要借助本地数据库的事务管理能力。在步骤1中将需要发送的消息和本地事务一起提交到DB,借助DB的事务管理确保消息持久化。步骤2应用通过本地消息表扫描,重试发送,确保消息可以发送成功。
Seata有三个核心组件:
三个组件相互协作,TC 以 Server 形式独立部署,TM和RM集成在应用中启动,其整体交互如下:
Seata 支持四种工作模式:
AT模式是Seata默认的工作模式。需要基于支持本地 ACID 事务的关系型数据库,Java 应用,通过 JDBC 访问数据库。
该模式是XA协议的演变,XA协议是基于资源管理器实现,而AT并不是如此。AT的2个阶段分别是:
下图中,步骤1开启全局事务;步骤2注册分支事务,这里对应着一阶段;步骤3提交或者回滚分支事务,对应着二阶段。
该模式工作分为三个阶段:prepare/commit/cancel。
1987年普林斯顿大学的Hector Garcia-Molina和Kenneth Salem发表了一篇Paper Sagas,讲述的是如何处理long lived transaction(长活事务)。Saga是一个长活事务可被分解成可以交错运行的子事务集合。论文见这里。
简单来说,Saga将一个长事务(T)分解成一系列Sub事务(Ti),每个Sub事务都有对应的补偿动作(Ci),用于撤销Ti事务产生的影响。Sub事务是直接提交到库,在出现异常时,逆向进行补偿。
因此Saga事务的组成有2种:
第一种就是正常提交的情况,第二种在提交Tj事务出现异常,开始逆向补偿的情况。
Saga模式是Seata提供的长事务解决方案。例如全局事务中涉及到外部系统,无法管理它的资源管理器,让它改造成TCC也不好实行,这时就可以采用此类方案。
在Saga模式中,业务流程中每个参与者都提交本地事务,当出现某一个参与者失败则补偿前面已经成功的参与者,一阶段正向服务和二阶段补偿服务都由业务开发实现。
上图中对于多个分支事务,省略了多次出现的 2.* 步骤。对于全局事务执行过程中业务应用宕机情况,业务应用集群中对等节点会通过从TC获取相关会话,从DB加载详细信息来恢复状态机。
XA是基于二阶段提交设计的接口标准。对于支持XA的资源管理器,借助Seata框架的XA模式,会使XA方案更简单易用。使用前提:需要分支数据库支持XA 事务,应用为 Java应用,且使用JDBC访问数据库。
在 Seata 定义的分布式事务框架内,利用事务资源(数据库、消息服务等)对 XA 协议的支持,以 XA 协议的机制来管理分支事务的一种 事务模式。
分布式事务方案没有银弹,根据自己的业务特性选择合适的模式。例如追求强一致性,可以选择AT和XA,存在和外部系统对接,可以选择Saga模式,不能依赖本地事务,可以采用TCC等等。结合各模式的优缺点进行选择。
鉴于Seata支持的模式较多,而其默认的模式是AT,为节省篇幅,以下围绕AT模式分析其相关的核心模块实现。
TC(事务协调器)以独立的服务启动,作为Server,维护全局事务和分支事务的状态,驱动全局事务提交或回滚。下面是TC的启动流程:
TM(事务管理器)集成在应用中启动,负责定义全局事务的范围,开始事务、提交事务、回滚事务。
TM所在应用中需要配置GlobalTransactionScannerbean,在应用启动时会进行如下初始化流程:
RM(资源管理器)集成在应用中启动,负责管理分支事务上的资源,向TC注册分支事务,汇报分支事务状态,驱动分支事务的提交或回滚。
RM所在的应用中除了需要跟TM一样配置GlobalTransactionScanner以启动RMClient,还需要配置DataSourceProxy,以实现对数据源访问代理。该数据源代理实现了sql的解析 → 生成undo-log → 业务sql和undo-log一并本地提交等操作。
下面以一个简单的例子来说明全局事务的工作原理:
购买操作实现在businessService.purchase中,purchase方法实现上通过GlobalTransaction注解,通过Dubbo服务,调用了库存服务deduct方法方法,样例如下:
@GlobalTransactional(timeoutMills = 300000, name = "dubbo-demo-tx")public void purchase(String userId, String commodityCode, int orderCount) { storageService.deduct(commodityCode, orderCount); // throw new RuntimeException("xxx");}
这里设定BusinessService在成功调用StorageService后,本地出现异常。
全局事务未提交,分支事务本地已经提交的情况下(假设修改了资源A),如何避免其他事务在此时修改资源A?Seata采用全局锁来实现,其流程如下:
在数据库本地隔离级别为读已提交或以上的基础上,Seata提供了读未提交,这个很好理解,全局事务提交前分支事务本地已经提交。如果想要实现读已提交,则需要在select语句上加for update。
Seata是Java领域很强大的分布式事务框架,其支持了多种模式。其中默认支持的AT模式,相比于传统的2PC协议(基于数据库的XA协议),很好地解决了2PC长期锁资源的问题,提高了并发度。Seata支持的各个模式中,AT模式对业务零入侵实现分布式事务,对于开发者更加友好。另外Seata的Server在选择合适的存储介质时可以进行集群模式,减少单点故障影响。
本文主要参考官网和部分博客,同时阅读了AT模式实现源码,如果有不对的地方,望指出,一起讨论交流。
作者:vivo官网商城开发团队
领取专属 10元无门槛券
私享最新 技术干货